МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 01.03.02 Прикладная математика и информатика, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Уравнения математической физики

Направление подготовки: 01.03.02 Прикладная математика И

информатика

Направленность (профиль): Математическое моделирование и системный

анализ

Форма обучения: Очная

> Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5665

Подписал: заведующий кафедрой Нутович Вероника

Евгеньевна

Дата: 10.04.2025

1. Общие сведения о дисциплине (модуле).

Целями освоения учебной дисциплины (модуля) являются:

- изучение методов решения дифференциальных уравнений в частных производных;
- изучение методов решения уравнений первого порядка, полученных из общего уравнения переноса;
 - исследование моделей, как линейных, так и нелинейных волн;
- изучение простейших гиперболических, параболических и эллиптических уравнений.

Задачами дисциплины (модуля) являются:

- привитие навыков современных видов математического мышления;
- привитие навыков использования математических методов и основ математического моделирования в практической деятельности.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ПК-4 - Уметь ставить цели создания системы, разрабатывать концепцию системы и требования к ней, выполнять декомпозицию требований к системе.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- основные определения, свойства, формулы и теоремы читаемых разделов уравнений математической физики.

Уметь:

- анализировать и сравнивать имеющиеся методы и средства решения прикладных задач.

Владеть:

- основными понятиями, определениями, теоремами и алгоритмами решения типовых задач.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Turn variofism ve postagania	Количество часов	
Тип учебных занятий	Всего	Семестр №6
Контактная работа при проведении учебных занятий (всего):		80
В том числе:		
Занятия лекционного типа	48	48
Занятия семинарского типа	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 28 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№ п/п	Тематика лекционных занятий / краткое содержание	
1	Уравнения в частных производных 1-го порядка	
	Рассматриваемые вопросы:	
	- уравнение переноса;	
	- линейные и нелинейные волны;	
	- постановка задачи Коши;	
	- построение решений однородных линейных и неоднородных линейных (квазилинейных)	
	уравнений методом характеристик.	
2	Уравнения в частных производных 2-го порядка	
	Рассматриваемые вопросы:	
	- классификация уравнений в частных производных 2-го порядка;	
	- канонические формы уравнений второго порядка с постоянными коэффициентами;	
	- вывод волнового уравнения;	

No			
п/п	Тематика лекционных занятий / краткое содержание		
	-вывод уравнения неразрывности;		
	-вывод уравнения теплопроводности;		
	-вывод уравнения Лапласа.		
3	7, 1		
	Рассматриваемые вопросы:		
-построение общего решения;			
- формула Даламбера, характеристический треугольник;			
	- полубесконечная струна.		
4	Простейшая смешанная задача для волнового уравнения		
	Рассматриваемые вопросы:		
	-постановка задачи;		
	-схема метода Фурье;		
	-неоднородное волновое уравнение;		
	-неоднородные краевые условия.		
5	Обоснование метода Фурье в простейшей смешанной задаче для волнового		
	уравнения		
Рассматриваемые вопросы:			
- условия согласования;			
- интеграл энергии;			
	- единственность решения.		
6	Корректность постановок задач		
	Рассматриваемые вопросы:		
-корректность смешанной задачи для волнового уравнения;			
	-пример Адамара.		
7	Смешанная задача для уравнения теплопроводности		
	Рассматриваемые вопросы:		
	-схема метода Фурье для уравнения теплопроводности;		
	-неоднородное уравнение для уравнения теплопроводности;		
	-неоднородные краевые условия.		
8	Обоснование метода Фурье в простейшей смешанной задаче для уравнения		
	теплопроводности		
	Рассматриваемые вопросы:		
	-условия согласования;		
	- принцип максимума;		
	-единственность решения;		
	-бесконечная дифференцируемость решений.		
9	Постановка задач для уравнения Лапласа		
Рассматриваемые вопросы:			
	- гармонические функции;		
	- гармонические функции, - задача Дирихле;		
	- задача Неймана;		
	- третья краевая задача;		
	- внешние и внутренние задачи.		

№ п/п	Тематика лекционных занятий / краткое содержание	
10	Схема метода Фурье для уравнения Лапласа в круге	
	Рассматриваемые вопросы:	
	-интеграл Пуассона;	
	-аналитичность решения.	
11	Свойства решений уравнения Лапласа	
	Рассматриваемые вопросы:	
	- принцип максимума для уравнения Лапласа;	
	- единственность решения;	
	- задача Неймана.	
12	Функция Грина для задачи Дирихле	
	Рассматриваемые вопросы:	
	- формулы Грина;	
	- понятие функции источника;	
	- выражение решения через функцию Грина.	

4.2. Занятия семинарского типа.

Практические занятия

№			
п/п	Тематика практических занятий/краткое содержание		
1	Уравнения с частными производными первого порядка. Отыскание общих решений		
	В результате выполнения заданий студент приобретает навыки решения задач по построению		
	общих решений уравнений с частными производными первого порядка.		
2	Классификация уравнений в частных производных 2-го порядка. Теорема Коши-		
	Ковалевской. Пример Адамара. Понятие о корректности решения задачи Коши		
	В результате выполнения заданий студент приобретает навыки решения задач по классификации		
	уравнений в частных производных 2-го порядка.		
3	Уравнение колебаний струны.		
	В результате выполнения заданий студент приобретает навыки решения задач по применению		
	формулы Даламбера к решению задачи Коши для неограниченной струны.		
4	Начально-краевые задачи для полуограниченной струны (метод падающей и		
	отраженной волн; метод отражения волн (задачи с однородным краевым		
	условием))		
	В результате выполнения заданий студент приобретает навыки решения задач по решению задач		
	для полуограниченной сруны.		
5	Начально-краевые задачи для полуограниченной струны — неоднородное краевое		
	условие		
	В результате выполнения заданий студент приобретает навыки решения задач по решению		
	смешанных задач для полуограниченной струны.		
6	Метод Фурье для отыскания решений начально-краевых задач для уравнений		
	колебаний струны; задача Штурма-Лиувилля и ее решение		
	В результате выполнения заданий студент приобретает навыки решения задач по решению		
	смешанных задач для ограниченной струны.		
7	Уравнение теплопроводности. Метод Фурье решения смешанной задачи для		
	уравнения теплопроводности		

No	Томотика проктиноских рандтий/кратког солоржание		
Π/Π	Тематика практических занятий/краткое содержание		
	В результате выполнения заданий студент приобретает навыки решения задач по решению		
	смешанных задач для уравнения теплопроводности.		
8	Уравнение теплопроводности. Распространение метода Фурье на неоднородные		
	уравнения		
	В результате выполнения заданий студент приобретает навыки решения смешанных неоднородных задач.		
9	Уравнение теплопроводности для бесконечного стержня. Формула Пуассона		
	В результате выполнения заданий студент приобретает навыки решения задачи Коши для		
	неограниченного стержня.		
10	Уравнение Лапласа. Метод Фурье для решения краевых задач в круге и кольце.		
	Функция Грина для решения задачи Дирихле. Метод конформных отображений		
	для решения краевых задач на плоскости		
	В результате выполнения заданий студент приобретает навыки решения задач по применению		
	метода Фурье для решения первой краевой задачи для уравнения Лапласа в круге и кольце.		
11	Краевые задачи в полуплоскости		
	В результате выполнения заданий студент приобретает навыки решения краевых задач для		
	уравнения Лапласа в полуплоскости.		
12	Внешняя задача Дирихле для круга		
	В результате выполнения заданий студент приобретает навыки решения краевой задачи для		
	уравнения Лапласа в внешности круга.		

4.3. Самостоятельная работа обучающихся.

No	Вид самостоятельной работы	
п/п		
1	Работа с литературой.	
2	Работа с лекционным материалом.	
3	Текущая подготовка к практическим занятиям.	
4	Подготовка к промежуточной аттестации.	
5	Подготовка к текущему контролю.	

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ π/π	Библиографическое описание	Место доступа
1	Уравнения в частных	https://library.miit.ru/bookscatalog/metod/03_19831.pdf
	производных. Ч. 1 А. С. Братусь,	
	Е. С. Чумерина Методические	
	указания, М.: МИИТ, -62 с.;	
	2010, ISBN нет	
2	Байков, В. А. Уравнения	URL: https://urait.ru/bcode/562402 (дата обращения:
	математической физики:	24.10.2025).
	учебник и практикум для вузов /	

	В. А. Байков, А. В. Жибер. — 2-	
	е изд., испр. и доп. — Москва:	
	Издательство Юрайт, 2025. —	
	254 с. — (Высшее образование).	
	— ISBN 978-5-534-02925-3.	
3	Палин, В. В. Методы	URL: https://urait.ru/bcode/563040 (дата обращения:
	математической физики.	24.10.2025).
	Лекционный курс : учебник для	
	вузов / В. В. Палин, Е. В.	
	Радкевич. — 2-е изд., испр. и	
	доп. — Москва : Издательство	
	Юрайт, 2025. — 222 с. —	
	(Высшее образование). — ISBN	
	978-5-534-03589-6.	

- 6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).
 - Научно-техническая библиотека РУТ (МИИТ) (http://library.miit.ru);
- Информационный портал Научная электронная библиотека eLIBRARY.RU (www.elibrary.ru);
 - Образовательная платформа «Юрайт» (https://urait.ru/);
- Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/);
- Интернет-университет информационных технологий (http://www.intuit.ru/).
- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Internet Explorer (или аналог). Операционная система Microsoft Windows (или аналог). Microsoft Office (или аналог).

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

9. Форма промежуточной аттестации:

Зачет в 6 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

профессор, профессор, д.н. кафедры «Цифровые технологии управления транспортными процессами»

А.М. Филимонов

Согласовано:

Заведующий кафедрой ЦТУТП

В.Е. Нутович

Председатель учебно-методической

комиссии

Н.А. Андриянова