МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА»

СОГЛАСОВАНО: УТВЕРЖДАЮ:

Выпускающая кафедра ЦТУТП Директор ИУЦТ

Заведующий кафедрой ЦТУТП

В.Е. Нутович

С.П. Вакуленко

05 октября 2020 г.

06 октября 2020 г.

Кафедра

«Физика»

Автор Кокин Сергей Михайлович, д.ф.-м.н., профессор

АННОТАЦИЯ К РАБОЧЕЙ ПРОГРАММЕ ДИСЦИПЛИНЫ

«Физика»

Направление подготовки: 01.03.02 – Прикладная математика и

Н.А. Клычева

информатика

Профиль: Математические модели в экономике и технике

Квалификация выпускника: Бакалавр

Форма обучения: очная

Год начала подготовки 2017

Одобрено на заседании Одобрено на заседании кафедры

Учебно-методической комиссии института

Протокол № 3 05 октября 2020 г.

Председатель учебно-методической

комиссии

Протокол № 1 31 августа 2020 г. Заведующий кафедрой

заведующий кафедрой

В.А. Никитенко

1. Цели освоения учебной дисциплины

Основной целью изучения учебной дисциплины «Физика» является формирование у учащегося компетенций для научно-исследовательской деятельности. В соответствии с этим дисциплина позволяет получить знания для решения следующих профессиональных задач:

- анализ научно-технической информации, отечественного и зарубежного опыта по тематике исследования;
- участие в работах по организации и проведению экспериментов на действующих объектах по заданной методике;
- обработка результатов экспериментальных исследований с применением современных информационных технологий и технических средств;
- проведение вычислительных экспериментов с использованием стандартных программных средств с целью получения математических моделей процессов и объектов автоматизации и управления;
- подготовка данных и составление обзоров, рефератов, отчетов, научных публикаций и докладов на научных конференциях и семинарах, участие во внедрении результатов исследований и разработок;
- организация защиты объектов интеллектуальной собственности и результатов исследований и разработок как коммерческой тайны предприятия.

Изучение курса общей физики в техническом университете обусловлено основополагающей ролью фундаментальных наук в подготовке будущих бакалавров. Это связано с тем, что внедрение современных высоких технологий в практическую деятельность выпускников технических университетов предполагает основательное знакомство с физическими основа-ми протекания соответствующих процессов, с классическими и с новейшими методами ис-следований. Данный курс даёт возможность будущим бакалаврам получить требуемые зна-ния в области физики, а также приобрести навыки их дальнейшего пополнения, используя в этих целях различные (в том числе – электронные) источники информации. Следует отме-тить: программа дисциплины «Физика» сформирована таким образом, чтобы не только дать студентам представление об основных разделах физики, познакомить их с наиболее важны-ми экспериментальными и теоретическими результатами, но и провести демаркацию между научным и антинаучным подходом в изучении окружающего мира. Дисциплина учит сту-дентов строить модели происходящих явлений и процессов, прививая понимание причинно-следственной связи между ними, формируя у будущих выпускников университета подлинно научное мировоззрение.

Цели дисциплины

В соответствии с ФГОС ВПО освоение учебной дисциплины «Физика» ставит целью выработки у будущих бакалавров по направлению 01.03.02 «Прикладная математика и информатика» (профиль «Прикладная математика и информатика») соответствующих профес-сиональных и общекультурных компетенций (см. далее).

Задачи дисциплины:

- формирование у студентов основ естественнонаучной картины мира, научного и инженерного мышления.
- освоение основных физических теорий, позволяющих описать явления в природе, и пределов применимости этих теорий для решения современных и перспективных технологических задач;
- овладение фундаментальными принципами и методами решения научно-технических задач, приобретение навыков экспериментальных исследований и оценки степени до-

стоверности получаемых результатов;

- формирование навыков по применению положений фундаментальной физики к грамотному научному анализу ситуаций, с которыми инженеру приходится сталкиваться при создании новой техники и новых технологий;
- ознакомление студентов с историей и логикой развития физики и основных её открытий.

В результате освоения дисциплины «Физика» студент должен научиться использовать законы физики в важнейших практических приложениях; познакомиться с основными физическими величинами, знать их определение, смысл, способы и единицы их измерения; представлять себе фундаментальные физические эксперименты и их роль в развитии науки. Кроме того, студент должен приобрести навыки работы с приборами и оборудованием со-временной физической лаборатории; навыки использования различных методик физических измерений и обработки экспериментальных данных; навыки проведения адекватного физи-ческого и математического моделирования, а также применения методов физико-математического анализа к решению конкретных естественнонаучных и технических про-блем.

Физика, как наука о наиболее общих законах природы в той или иной степени имеет непосредственную связь практически со всеми дисциплинами, изучаемыми на протяжении всего институтского курса. В частности, на законах физики основана работа всех современ-ных электронно-вычислительных устройств сбора, передачи и обработки информации. Именно поэтому в процессе чтения лекций делается упор на физический смысл явлений, наблюдаемых в окружающем мире.

2. Место учебной дисциплины в структуре ОП ВО

Учебная дисциплина "Физика" относится к блоку 1 "Дисциплины (модули)" и входит в его базовую часть.

3. Планируемые результаты обучения по дисциплине (модулю), соотнесенные с планируемыми результатами освоения образовательной программы

Процесс изучения дисциплины направлен на формирование следующих компетенций:

ОК-7	способностью к самоорганизации и самообразованию
ОПК-1	способностью использовать базовые знания естественных наук,
	математики и информатики, основные факты, концепции, принципы
	теорий, связанных с прикладной математикой и информатикой
ПК-1	способностью собирать, обрабатывать и интерпретировать данные
	современных научных исследований, необходимые для формирования
	выводов по соответствующим научным исследованиям

4. Общая трудоемкость дисциплины составляет

14 зачетных единиц (504 ак. ч.).

5. Образовательные технологии

Преподавание дисциплины «Физика» осуществляется в форме лекций, лабораторных работ и практических занятий. Лекции (18 часов в IV семестре, 36 часов в V семестре и 18 часов в VI семестре) проводятся в традиционной классно-урочной организационной форме и по типу управления познавательной деятельностью на 83 % являются традиционными классически-лекционными, объяснительно-иллюстративными и в 17 % используются интерактивные технологии. Интерактивные технологии включают обсуждение в аудитории реальных ситуаций (в том числе – в виде лекционных

демонстраций), для объяснения которых требуется знать суть изучаемых физических явлений, процессов. К интерактивным технологиям относится также активное использование технических учебных средств, в том числе таблиц, слайдов, фильмов, роликов, видеоклипов, видеотехники, с помощью которых иллюстрируется учебный материал. Лабораторный практикум (18 часов в IV семестре, 18 часов в V семестре и 18 часов в VI семестре) предполагает выполнение лабораторных работ на реальном оборудовании с последующей защитой полученных результатов. В рамках процедуры контроля знаний на практических занятиях (18 часов в IV семестре, 18 часов в V семестре и 18 часов в VI семестре) и при защите лабораторных работ может быть использован кафедральный компьютерный комплекс с установленными на нём тестирующими программами. Самостоятельная работа студента организована с использованием традиционных видов работы. К традиционным видам самостоятельной работы (187 часов) относятся работа с лекционным материалом, с учебными пособиями, подготовка к получению допуска, выполнению и защите лабораторных работ, решение задач домашнего задания для практических занятий. Оценка полученных знаний, умений и навыков основана на использовании модульно-рейтинговой системы РИТМ-МИИТ. Весь курс разбит на 9 разделов (модулей), представляющих собой логически завершенные объёмы учебной информации: по материалам этих модулей проводится тестирование. Фонды оценочных средств освоенных компетенций включают как вопросы теоретического характера для оценки знаний, так и задания практического содержания (решение конкретных задач, работа с данными) для оценки умений и навыков. Теоретические знания проверяются путём применения таких организационных форм, как индивидуальные и групповые опросы (устные и письменные), выполнение тестов с использованием компьютеров или на бумажных носителях. Проведение занятий по дисциплине возможно с применением электронного обучения и дистанционных образовательных технологий, реализуемые с применением информационнотелекоммуникационных сетей при опосредованном (на расстоянии) взаимодействии обучающихся и педагогических работников. В процессе проведения занятий с применением электронного обучения и дистанционных образовательных технологий применяются современные образовательные технологии, такие как (при необходимости):использование современных средств коммуникации; - электронная форма обмена материалами:- дистанционная форма групповых и индивидуальных консультаций:использование компьютерных технологий и программных продуктов, необходимых для сбора и систематизации информации, проведения требуемых программой расчетов и т.д..

6. Содержание дисциплины (модуля), структурированное по темам (разделам)

РАЗДЕЛ 1 Механика

Тема: Предмет и задачи физики. Механика.

Кинематика: основные понятия. Движение по прямой: скорость, ускорение. Криволинейное движение. Нормальное и тангенциальное ускорение. Кинема-тика вращательного движения: угловая скорость и угловое ускорение, их связь с линейной скоростью и ускорением.

Инерциальные системы отсчета и первый закон Ньютона. Второй закон Нью-тона. Масса, импульс, сила. Уравнение движения материальной точки. Третий закон Ньютона и закон сохранения импульса. Закон Всемирного тяготения. Силы трения.

Тема: Динамика вращательного движения.

Момент силы; момент инерции; момент импульса. Теорема Штейнера. Основной закон динамики вращательного дви-жения в случае системы точек и в случае твёрдого тела. Закон сохранения момента импульса. Гироскопы.

Работа переменной силы. Мощность. Кинетическая энергия тела при поступа-тельном движении (вывод формулы). Вычисление второй космической скоро-сти. Кинетическая энергия тела при вращательном движении. Поле сил. Кон-сервативные и неконсервативные силы, примеры. Потенциальная энергия. Потенциальная энергия в поле сил тяжести, потенциальная энергия упруго деформированной пружины (вывод формулы).

Тема: Принцип относительности Галилея.

Постулаты Эйнштейна в специальной теории относительности. Преобразования Галилея в классической механике. Преобразования Лоренца.

Следствия из преобразований Лоренца. Сложение скоростей в специальной теории относительности. Релятивистская динамика. Полная энергия тела в СТО. Энергия покоя, кинетическая энергия тела. Связь релятивистской энергии и импульса.

РАЗДЕЛ 2

Электростатика и постоянный ток

Тема: Закон Кулона.

Напряженность электростатического поля. Силовые линии.

Теорема Гаусса в интегральной форме и ее применение для расчета электриче-ских полей в вакууме.

Работа по перемещению заряда. Потенциальная энергия в электрическом поле.

Потенциал, его связь с энергией и работой, с напряженностью поля. Эквипо-тенциальные поверхности.

Тема: Диэлектрики в электрическом поле.

Полярные и неполярные молекулы. Поля-ризованность. Вектор электрического смещения. Применение теоремы Гаусса в интегральной форме для расчета электрических полей в диэлектрике.

Проводники в электрическом поле. Электроемкость. Конденсаторы. Энергия электрического поля. Сила тока, плотность тока. Закон Ома для однородного участка цепи. Электрическое сопротивление.

Тема: Закон Ома в дифференциальной форме.

По разделам 1, 2. Быстрый письменный опрос, тестовые контроли, оценка за решение задач, оценка за защиту лабораторных работ. Оценка выставляется в формате РИТМ-МИИТ.

Э.д.с. Законы Ома для участка цепи, содержащего источник э.д.с. и для замкнутой цепи. Закон Джоуля-Ленца. Правила Кирхгофа. Электрический ток в вакууме. Явление

термоэлектронной эмиссии. Вакуумный диод.

РАЗДЕЛ 3

Магнетизм

Тема: Магнитное поле постоянных магнитов и проводников с током.

Закон Ампера. Вектор магнитной индукции. Магнитное взаимодействие постоянных токов.

Закон Био-Савара-Лапласа. Теорема о циркуляции вектора магнитной индукции, примеры применения теоремы. Действие магнитного поля на рамку с током. Магнитный момент витка с током.

Сила Лоренца. Движение заряженных частиц в магнитном поле. Циклотрон. Эффект Холла. Поток вектора магнитной индукции. Теорема Гаусса. Работа по перемещению проводника с током в магнитном поле.

Тема: Магнитное поле в веществе.

Намагниченность. Напряжённость магнитного поля. Закон полного тока. Магнитная проницаемость. Диа-, парамагнетизм.

Ферромагнетизм.

Объёмная плотность энергии магнитного поля.

Явление электромагнитной индукции.

Тема: Явление самоиндукции.

По разделам 2, 3

Быстрый письменный опрос, тестовые контроли, оценка за решение задач, оценка за защиту лабораторных работ. Оценка выставляется в формате РИТМ-МИИТ.

Индуктивность. Явление взаимной индукции. Работа трансформатора. Система уравнений Максвелла в интегральной форме. Электромагнитное поле.

Экзамен

РАЗДЕЛ 5

Колебания и волны

Тема: Колебательное движение, гармонические колебания.

Кинематика и динамика свободных незатухающих колебаний. Математический и физический маятники. Колебательный контур. Энергия колебаний.

Тема: Свободные затухающие колебания.

Энергия колебаний. Апериодический процесс.

Тема: Вынужденные колебания в колебательном контуре.

Резонанс. Сложение гармонических колебаний одного направления. Биения. Модуляция. Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу.

Тема: Волны в упругой среде.

Уравнение волны, волновое уравнение. Суперпозиция волн. Стоячие волны.

Тема: Электромагнитные волны.

Энергия волны. Вектор Умова-Пойнтинга. Опыты Герца. Шкала электромагнитных волн.

РАЗДЕЛ 6

Волновая и квантовая оптика

Тема: Свет как электромагнитная волна.

Интерференция света. Принцип Гюйгенса. Интерференция в тонких плёнках. Применение интерференции.

Тема: Дифракция света.

Принцип Гюйгенса-Френеля. Метод зон Френеля. Дифракция от одной щели. Дифракционная решетка. Голография.

Тема: Взаимолействие света с веществом.

Поглощение света. Рассеяние света.

Поляризованный свет. Способы получения поляризованного света. Законы Брюстера, Малюса. Применение поляризованного света.

Тема: Дисперсия света.

Использование дисперсии. Световоды. Нелинейная оптика.

Тема: Тепловое излучение и его законы.

Формула Планка. Пирометры.

Тема: Внешний фотоэффект.

Уравнение Эйнштейна. Использование явления фотоэффекта в технике. Опыт Боте. Фотоны. Масса и импульс фотона. Корпускулярно-волновой дуализм света.

Тема: Закономерности в спектрах атома водорода.

По разделам 5, 6

Быстрый письменный опрос, тестовые контроли, оценка за решение задач, оценка за защиту лабораторных работ.

Оценка выставляется в формате РИТМ-МИИТ.

Модель атома по Томсону. Опыты Резерфорда. Строение атома водорода по Бору. Постулаты Бора. Испускание и поглощение фотонов.

РАЗДЕЛ 7

Молекулярная физика и термодинамика

Тема: Идеальный газ.

Уравнение Клапейрона-Менделеева. Реальные газы. Уравнение Ван-дер-Ваальса. Ожижение газов.

Тема: Основное уравнение молекулярно-кинетической теории газов.

Распределение Максвелла частиц по скоростям

Тема: Барометрическая формула.

Распределение Больцмана. Распределение Максвелла-Больцмана. Явления переноса.

Тема: Первое начало термодинамики.

Работа, теплота, внутренняя энергия. Теплоемкость идеального газа. Уравнение Майера.

Тема: Адиабатный процесс.

Уравнение Пуассона. Работа при изопроцессах.

Круговые процессы.

Тема: К. п. д. тепловых машин.

По разделам 5, 6

Быстрый письменный опрос, тестовые кон-троли, оценка за решение задач, оценка за защиту лабораторных работ.

Оценка выставляется в формате РИТМ-МИИТ.

Второе начало термодинамики. Энтропия. Химический потенциал.

РАЗДЕЛ 9

Основы квантовой механики

Тема: Гипотеза де Бройля.

Опыты Дэвиссона и Джермера. Дифракция микрочастиц. Принцип неопределенности Гейзенберга. Волновая функция, ее статистический смысл и условия, которым она должна удовлетворять.

Тема: Уравнение Шредингера.

Уравнение Шредингера для стационарных состояний. Свободная микрочастица. Микрочастица в одномерной потенциальной яме.

Микрочастица у одномерного потенциального порога и барьера. Туннельный эффект. Квантовый осциллятор.

Тема: Квантово-механическое описание атомов.

Стационарное уравнение Шредингера для атома водорода. Волновые функции и квантовые числа. Правила отбора для квантовых переходов. Опыт Штерна и Герлаха. Эффект Зеемана

Тема: Виды химической связи.

Аморфные тела, кристаллы. Дефекты кристаллической решётки. Кристалл: образование зон энергий. Зонные схемы металла, диэлектрика, полупроводника.

РАЗДЕЛ 10

Физика конденсированного состояния вещества

Тема: Квантовые системы из одинаковых частиц.

Вырожденные и невырожденные коллективы. Квантовые статистические распределения Бозе-Эйнштейна и Ферми-Дирака и их связь с распределением Максвелла-Больцмана. Плотность энергетических состояний. Энергия Ферми. Электронный газ в металлах. Подвижность носителей заряда в кристаллах. Зависимость проводимости металлов от температуры.

Тема: Электронных газ в полупроводниках (собственных и примесных).

По разделам 9, 10. Быстрый письменный опрос, тестовые контроли, оценка за решение задач. Оценка выставляется в формате РИТМ-МИИТ.

Дырки. Зависимость концентрации носителей заряда и электропроводности от температуры в собственных и примесных полупроводниках..

Тема: Сверхпроводимость.

Сверхтекучесть. Электропроводность полупроводников в сильных электрических полях. Поглощение света, внутренний фотоэффект. Излучение света. Лазеры. Контактные явления: p-n-переход (выпрямляющее действие, фотоэффект, излучение света). Перспективы нанотехнологий

РАЗДЕЛ 11

Ядерная физика. Элементарные частицы

Тема: Строение ядра атома.

Радиоактивность. Основные понятия радиационной дозиметрии. Ядерные реакции. Энергия связи. Дефект массы. принципиальные основы ядерной энергетики (реакции деления и синтеза). Виды фундаментальных взаимодействий. Элементарные частицы. Кварки, лептоны, частицы-переносчики взаимодействий.

Тема: Субъядерная физика.

По разделам 8, 9

Быстрый письменный опрос, тестовые контроли, оценка за решение задач. Оценка выставляется в формате РИТМ-МИИТ.

Попытки объединения фундаментальных взаимодействий. Современные космологические представления об эволюции Вселенной. Модель Большого взрыва. Современные научно-исследовательские программы в области физики. Физическая картина мира как философская категория. Антропный принцип.