МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА»

СОГЛАСОВАНО: УТВЕРЖДАЮ:

Выпускающая кафедра ТЖТ Декан

Заведующий кафедрой ТЖТ

7 Ф.А. Поливода

И.В. Федякин

22 мая 2020 г. 27 мая 2020 г.

Кафедра «Физика»

Автор Наумов Николай Павлович, к.т.н., доцент

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Физика

Направление подготовки: 13.03.01 – Теплоэнергетика и теплотехника

Профиль: Промышленная теплоэнергетика

Квалификация выпускника: Бакалавр

Форма обучения: очно-заочная

Год начала подготовки 2020

Одобрено на заседании Сдобрено на заседании кафедры

Учебно-методической комиссии института

Протокол № 10 26 мая 2020 г.

Председатель учебно-методической

комиссии

Одоорено на заседании кафедры

Протокол № 12 27 апреля 2020 г.

Заведующий кафедрой

С.В. Володин

В.А. Никитенко

1. ЦЕЛИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Основной целью изучения учебной дисциплины «Физика» является формирование у обучающегося компетенций для следующих видов деятельности: профессиональной, научно-исследовательской.

Дисциплина предназначена для получения знаний для решения следующих профессиональных задач (в соответствии с видами деятельности):

Научно-исследовательская деятельность:

анализ научно-технической информации, отечественного и зарубежного опыта по тематике исследования;

участие в работах по организации и проведению экспериментов на действующих объектах по заданной методике;

обработка результатов экспериментальных исследований с применением современных информационных технологий и технических средств;

проведение вычислительных экспериментов с использованием стандартных программных средств с целью получения математических моделей процессов и объектов автоматизации и управления;

подготовка данных и составление обзоров, рефератов, отчетов, научных публикаций и докладов на научных конференциях и семинарах, участие во внедрении результатов исследований и разработок;

организация защиты объектов интеллектуальной собственности и результатов исследований и разработок как коммерческой тайны предприятия.

Изучение курса общей физики в техническом университете обусловлено возрастающей ролью фундаментальных наук в подготовке бакалавра. Это связано с тем, что внедрение современных высоких технологий в практическую инженерную деятельность предполагает основательное знакомство работников с физическими основами протекания соответствующих процессов, с классическими и с новейшими методами физических исследований. Данный курс даёт возможность будущим бакалаврам получить требуемые знания в области физики, а также приобрести навыки их дальнейшего пополнения, используя в этих целях различные (в том числе — электронные) источники информации. Более того, программа дисциплины «Физика» сформирована таким образом, чтобы не только дать студентам представление об основных разделах физики, познакомить их с наиболее важными экспериментальными и теоретическими результатами, но и провести демаркацию между научным и антинаучным подходом в изучении окружающего мира. Дисциплина учит студентов строить модели происходящих явлений и процессов, прививая понимание причинно-следственной связи между ними, формируя у будущих бакалавров подлинно научное мировоззрение.

Кроме того, физика создает универсальную базу для изучения общепрофессиональных и специальных дисциплин, закладывает фундамент последующего обучения в магистратуре, аспирантуре. Она даёт цельное представление о физических законах окружающего мира в их единстве и взаимосвязи, вооружает бакалавров необходимыми знаниями для решения научно-технических задач в теоретических и прикладных аспектах.

Задачи дисциплины:

- формирование у студентов основ естественнонаучной картины мира,
- освоение основных физических теорий, позволяющих описать явления в природе, и пределов применимости этих теорий для решения современных и перспективных технологических задач;
- овладение фундаментальными принципами и методами решения научно-технических задач, приобретение навыков экспериментальных исследований и оценки степени достоверности получаемых результатов;
- формирование навыков по применению положений фундаментальной физики к грамотному научному анализу ситуаций, с которыми бакалавру придётся сталкиваться

при создании новой техники и новых технологий;

- ознакомление студентов с историей и логикой развития физики и основных её открытий.

В результате освоения дисциплины «Физика» студент должен научиться использовать законы физики в важнейших практических приложениях; познакомиться с основными физическими величинами, знать их определение, смысл, способы и единицы их измерения; представлять себе фундаментальные физические эксперименты и их роль в развитии науки. Кроме того, студент должен приобрести навыки работы с приборами и оборудованием современной физической лаборатории; навыки использования различных методик физических измерений и обработки экспериментальных данных; навыки проведения адекватного физического и математического моделирования, а также применения методов физико-математического анализа к решению конкретных естественнонаучных и технических проблем.

Физика, как наука о наиболее общих законах природы в той или иной степени имеет непосредственную связь практически со всеми дисциплинами, изучаемыми на протяжении всего институтского курса. В частности, на законах физики основана работа всех современных автоматических устройств передачи, сбора и обработки информации. Именно поэтому в процессе чтения лекций делается упор на физический смысл явлений, наблюдаемых в окружающем мире.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Учебная дисциплина "Физика" относится к блоку 1 "Дисциплины (модули)" и входит в его базовую часть.

2.1. Наименования предшествующих дисциплин

2.2. Наименование последующих дисциплин

Результаты освоения дисциплины используются при изучении последующих учебных дисциплин:

- 2.2.1. Безопасность жизнедеятельности
- 2.2.2. Гидрогазодинамика
- 2.2.3. Источники загрязнения и технические средства защиты окружающей среды
- 2.2.4. Материаловедение и ТКМ
- 2.2.5. Метрология, сертификация, технические измерения и автоматизация тепловых процессов
 - 2.2.6. Механика
 - 2.2.7. Нагнетатели и тепловые двигатели
 - 2.2.8. Нетрадиционные и возобновляемые источники энергии
 - 2.2.9. Основы трансформации теплоты
 - 2.2.10. Охрана окружающей среды
- 2.2.11. Системы теплоснабжения предприятий промышленности, ж.д. транспорта и ЖКХ
 - 2.2.12. Тепловые станции с водогрейными и паровыми котлами
 - 2.2.13. Тепломассообмен
- 2.2.14. Тепломассообменное оборудование предприятий промышленности и ж.д. транспорта
 - 2.2.15. Теплоэлектрические станции
 - 2.2.16. Техническая термодинамика
- 2.2.17. Технологические энергоносители и энергосистемы предприятий промышленности, ж.д. транспорта и ЖКХ
 - 2.2.18. Топливо, водоподготовка и смазочные материалы в энергетике
 - 2.2.19. Холодильные машины и тепловые насосы
 - 2.2.20. Экология
 - 2.2.21. Электроснабжение и электрооборудование предприятий ЖКХ
 - 2.2.22. Электротехника и электроника
- 2.2.23. Энергетика ж.д. транспорта. Нормирование потребления топливно-энергетических ресурсов
 - 2.2.24. Энергосбережение в теплоэнергетике и теплотехнологии

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫЕ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

В результате освоения дисциплины студент должен:

№ п/п	Код и название компетенции	Ожидаемые результаты
1	ОПК-2 Способен применять соответствующий физико-математический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач	ОПК-2.1 Применяет математический аппарат исследования функций, линейной алгебры, дифференциального и интегрального исчисления, рядов, дифференциальных уравнений, теории функций комплексного переменного, численных методов.
2	ОПК-5 Способен проводить измерения электрических и неэлектрических величин на объектах теплоэнергетики и теплотехники	ОПК-5.1 Выбирает средства измерения, проводит измерения электрических и неэлектрических величин, обрабатывает результаты измерений и оценивает их погрешность.

4. ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ) В ЗАЧЕТНЫХ ЕДИНИЦАХ И АКАДЕМИЧЕСКИХ ЧАСАХ

4.1. Общая трудоемкость дисциплины составляет:

8 зачетных единиц (288 ак. ч.).

4.2. Распределение объема учебной дисциплины на контактную работу с преподавателем и самостоятельную работу обучающихся

	Количество часов				
Вид учебной работы	Всего по учебному плану	Семестр 1	Семестр 2		
Контактная работа	88	44,15	44,15		
Аудиторные занятия (всего):	88	44	44		
В том числе:					
лекции (Л)	36	18	18		
практические (ПЗ) и семинарские (С)	16	8	8		
лабораторные работы (ЛР)(лабораторный практикум) (ЛП)	36	18	18		
Самостоятельная работа (всего)	128	64	64		
Экзамен (при наличии)	72	36	36		
ОБЩАЯ трудоемкость дисциплины, часы:	288	144	144		
ОБЩАЯ трудоемкость дисциплины, зач.ед.:	8.0	4.0	4.0		
Текущий контроль успеваемости (количество и вид текущего контроля)	ПК1, ПК2	ПК1, ПК2	ПК1, ПК2		
Виды промежуточной аттестации (экзамен, зачет)	ЭК	ЭК	ЭК		

4.3. Содержание дисциплины (модуля), структурированное по темам (разделам)

		Тома (постол) мусбуюй				еятельнос герактивн			Формы текущего	
№ п/п	Семестр	Тема (раздел) учебной дисциплины	П	JIP	113	KCP	CP	Всего	контроля успеваемости и промежу-точной аттестации	
1	2	3	4	5	6	7	8	9	10	
1	1	Раздел 1 МЕХАНИКА	6	4	2	,	11	23		
2	1	Тема 1.1 Предмет и задачи физики. Динамика вращательного движения. Работа переменной силы. Механика. Кинематика поступательного движения. Кинематика вращательного движения. Кинематика вращательного движения. Импульс тела и системы тел. Системы отсчёта. Инерциальные системы отсчёта. Первый, второй, третий законы Ньютона. Закон сохранения импульса. Закон Всемирного тяготения.	4					4		
3	1	Тема 1.4 Принцип относительности Галилея. Постулаты Эйнштейна в специальной теории относительности. Преобразования Галилея в классической механике. Преобразования Лоренца. Следствия из преобразований Лоренца. Сложение скоростей в специальной теории относительности. Релятивистская динамика. Полная энергия тела в специальной теории относительности. Энергия покоя, кинетическая энергия тела. Связь релятивистской энергии и импульса.	2					2		

				Виды у	чебной д	еятельнос	ти в часах	ζ/	Формы
							ой форме		текущего
No	Семестр	Тема (раздел) учебной							контроля
п/п	эме	дисциплины							успеваемости и
	ŭ					<u>_</u>		Всего	промежу-
			5	JI.	113	KCP	C	Bee	точной
1	2	3	4	5	6	7	8	9	аттестации 10
4	1	Раздел 2	6	4	2	/	11	23	10
-	1	МОЛЕКУЛЯРНО-	0	7	2		11	23	
		КИНЕТИЧЕСКАЯ							
		ТЕОРИЯ И							
		ТЕРМОДИНАМИКА							
5	1	Тема 2.1	4					4	
		Агрегатное состояние							
		вещества.							
		Распределение молекул							
		идеального газа по							
		скоростям и энергиям.							
		Модель «идеальный							
		газ».Основное							
		уравнение молекулярно-							
		кинетической теории							
		газов. Уравнение состояния идеального							
		газа. Распределение							
		энергии по степеням							
		свободы молекул							
6	1	Тема 2.3	2					2	ПК1
		Второе начало							
		термодинамики.							
		Термодинамические							
		функции							
		Статистическое							
		толкование 2-го начала							
		термодинамики.							
		Энтропия и							
		информация. Закрытые							
		и открытые системы.							
		Флуктуации, бифуркации и							
		самоорганизация.							
7	1	Раздел 3	2	4	2		11	19	
_ ′	1	ЭЛЕКТРОСТАТИКА					11	17	
8	1	Тема 3.1	2					2	
		Электрическое							
		поле. Теорема Гаусса для							
		электрического поля.							
		Проводник в							
		электрическом поле.							
		Закон сохранения							
		и напряженности.							
			Ī	1	Ī	1	İ	l	1
		Принцип суперпозиции							
		электрического заряда. Закон Кулона. Напряжённость электрического поля. Потенциал электрического поля. Силовые линии. Эквипотенциальные линии. Связь потенциала							

				κ/	Формы				
							ой форме		текущего
No	Семестр	Тема (раздел) учебной							контроля
п/п	эме	дисциплины							успеваемости и
	ರ	7, 1, 1				Д		Всего	промежу-
			Б	AL	113	KCP	C	Bee	точной
1	2	3	4	5	6	7	8	9	аттестации
1			4	3	0	/	8	9	10
		потенциала электрического поля							
		электрического поля							
9	1	Раздел 4	2	2	1		11	16	
	-	ПОСТОЯННЫЙ	_				11	10	
		ЭЛЕКТИРЕСКИЙ ТОК							
10	1	Тема 4.1	2					2	
		Соединение элементов						_	
		электрической цепи (на							
		примере конденсаторов							
		и резисторов). Законы							
		Кирхгофа.							
		Постоянный							
		электрический ток.							
		Закон Ома для							
		однородного участка							
		цепи. Электрическое							
		сопротивление. Закон							
		Ома в							
		дифференциальной							
		форме (вывод). Э.д.с.							
		Закон Ома для							
		неоднородного участка							
		цепи. Закон Ома для							
11	1	полной цепи. Раздел 5	2	4	1		11	18	
11	1	ЭЛЕКТРОМАГНЕТИЗМ	2	4	1		11	10	
12	1	Тема 5.1	2					2	ПК2
12	•	Магнитное поле.	~					_	1111.2
		Теорема о циркуляции							
		вектора магнитной							
		индукции в вакууме.							
		Виток с током в							
		магнитном поле.							
		Магнитное поле в							
		веществе: гипотеза							
		Ампера. Явление							
		электромагнитной							
		индукции							
		Силовые линии – линии							
		индукции магнитного							
		поля. Графическое							
		изображение линий							
		индукции. Закон							
		Ампера. Вектор							
		индукции магнитного							
		поля. Принцип							
		суперпозиции. Закон							
		Био – Савара – Лапласа,							
		примеры его							
13	1	применения. Экзамен						36	ЭК
14	2	Раздел 6	6	4	2		22	34	JK .
14		КОЛЕБАНИЯ И	U	+				J4	
L		ROJILDAHIMI II		<u> </u>	[

							сти в часах		Формы текущего
<u>№</u> п/п	Семестр	Тема (раздел) учебной дисциплины	П	JIP	113	KCP	CP	Всего	контроля успеваемости и промежу- точной аттестации
1	2	3	4	5	6	7	8	9	10
		ВОЛНЫ							
15	2	Тема 6.1 Периодические процессы и гармонические колебания. Свободные затухающие колебания осциллятора с потерями (механические и электромагнитные). Сложение колебаний (векторное описание, биения, фигуры Лиссажу). Уравнение и примеры идеальных гармонических осцилляторов (маятники и электрический колебательный контур). Энергия колебаний.	2					2	
16	2	Тема 6.4 Упругие волны в газах, жидкостях и твердых телах. Интерференция волн. Электромагнитные волны. Волновое уравнение. Опыты Герца. Излучение диполя. Энергетические характеристики волн. Вектор Умова—Пойнтинга. Эффект Доплера	4					4	
17	2	Раздел 7 ВОЛНОВАЯ ОПТИКА	2	4	2		20	28	
18	2	Тема 7.2 Принципы голографии. Эллиптически поляризованный свет. Квантовые свойства электромагнитного излучения. Дисперсия и экстинкция волн. Фазовая и групповая скорости волн. Поляризация волн. Получение и анализ линейно- поляризованного света. Поляризация света при отражении и преломлении на границе двух диэлектриков.	2					2	ПК1

							ти в часах		Формы
№ п/п	Семестр	Тема (раздел) учебной дисциплины	П	B TOM	YUCJIE UHT	ССР В ССР	ой форме	Всего	текущего контроля успеваемости и промежу- точной
1	2	3	4	5	6	7	8	9	аттестации 10
		Закон Малюса.				,			10
19	2	Раздел 8 КВАНТОВАЯ И АТОМНАЯ ФИЗИКА	8	6	2		22	38	
20	2	Тема 8.2 Классическая модель строения атома. Гипотеза де Бройля. Одномерный порог и барьер. Опыт Штерна и Герлаха. Эффект Зеемана. Формула Бальмера и постулаты Бора. Три вида взаимодействия электромагнитного излучения с атомами. Лазерное излучение.	4					4	
21	2	Тема 8.6 Функция распределения Ферми-Дирака и Бозе- Эйнштейна. Энергетические уровни молекул. Зонная концепция твёрдых тел. Уровень Ферми в чистых и примесных полупроводниках. Температурная зависимость проводимости металлов и полупроводников. Сверхпроводимость. Эффект Холла в металлах и полупроводниках	2					2	
22	2	Тема 8.7 Оптические явления в полупроводниках (фотопроводимость, процессы генерации и рекомбинации носителей заряда) Контактные явления в полупроводниках и развитие микроэлектроники.	2					2	ПК2
23	2	Раздел 9 ЯДЕРНАЯ ФИЗИКА. ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И ЭЛЕМЕНТЫ	2	4	2		9	17	

	1	T		D	٠ ـ ـ ـ ـ			- 1	Φ
						еятельнос			Формы
	ф			ВТОМ	числе инт	ерактивн	ои форме		текущего
No	Семестр	Тема (раздел) учебной							контроля
Π/Π	эме	дисциплины							успеваемости и
	ŭ					Ъ		Всего	промежу-
			П	AL	113	KCP	CP	ဒ္ဓင	точной
			-	-					аттестации
1	2	3	4	5	6	7	8	9	10
		СОВРЕМЕННОЙ							
		ФИЗИКИ							
24	2	Тема 9.1	2					2	
		Основы физики							
		атомного ядра (состав и							
		характеристики).							
		Фундаментальные							
		взаимодействия и							
		основные классы							
		элементарных частиц.							
		Основные особенности							
		классической,							
		неклассической и							
		постнеклассической							
		физики.							
		Радиоактивность.							
		Ядерные реакции и							
		основы ядерной							
		энергетики. Звезда типа							
		Солнце. Детектирование							
		ядерных излучений.							
		Понятие о дозиметрии и							
		защите.							
25	2	Раздел 10						36	ЭК
23	~	ЭКЗАМЕН							
26		Bcero:	36	36	16		128	288	
	1					l			1

4.4. Лабораторные работы / практические занятия

Практические занятия предусмотрены в объеме 16 ак. ч.

№ п/п	№ семестра	Тема (раздел) учебной дисциплины	Наименование занятий	Всего ча- сов/ из них часов в интерак- тивной форме
1	2	3	4	5
1	1	РАЗДЕЛ 1 МЕХАНИКА	Кинематика поступательного и вращательного движения. Динамика поступательного движения. Законы Ньютона. Задачи из раздела 1 [3]. Задачи из раздела 2 [3]. Динамика вращательного движения. Работа и энергия. Законы сохранения. Задачи из раздела 3 [3].	2
2	1	РАЗДЕЛ 2 МОЛЕКУЛЯРНО- КИНЕТИЧЕСКАЯ ТЕОРИЯ И ТЕРМОДИНАМИКА	Газовые законы. Молекулярно-кинетическая теория газов. Первое начало термодинамики, Задачи из раздела 15 [3]. Термодинамика. Задачи из раздела 16 [3].	2
3	1	РАЗДЕЛ З ЭЛЕКТРОСТАТИКА	Электростатика. Закон Кулона, напряжённость и потенциал электрического поля. Принцип суперпозиции. Задачи из раздела 4 [3]. Проводники в электрическом поле. Электрические конденсаторы. Задачи из раздела 5 [3].	2
4	1	РАЗДЕЛ 4 ПОСТОЯННЫЙ ЭЛЕКТИРЕСКИЙ ТОК	Постоянный электрический ток. Задачи из раздела 6 [3].	1
5	1	РАЗДЕЛ 5 ЭЛЕКТРОМАГНЕТИЗМ	Магнитное поле. Силы в магнитном поле. Задачи из раздела 7 [3]. Магнитное поле в веществе. Электромагнетизм. Задачи из раздела 8 [3]. Контрольная работа. Обзорное занятие (по задачам разделов 1 – 8 [3]).	1
6	2	РАЗДЕЛ 6 КОЛЕБАНИЯ И ВОЛНЫ	Свободные колебания. Задачи из раздела 9 [3] и 12 и 14 задачника [8] Вынужденные колебания. Сложение колебаний. Задачи из раздела 10 [3] и 12 и 14 задачника [8] Виды волн. Интерференция волн. Задачи из раздела 11 задачника [3] и12,14 задачника [8].	2
7	2	РАЗДЕЛ 7 ВОЛНОВАЯ ОПТИКА	Интерференция, дифракция, дисперсия и поляризация волн Задачи из раздела 11-13 задачника [3] и 16 задачника [8].	2

№ п/п	№ семестра	Тема (раздел) учебной дисциплины	Наименование занятий 4	Всего ча- сов/ из них часов в интерак- тивной форме
8	2	РАЗДЕЛ 8 КВАНТОВАЯ И АТОМНАЯ ФИЗИКА	Квантовые свойства электромагнитного излучения и законы теплового излучения. Строение атома. Задачи из раздела 14 [3], 20 [8] и 34-38 задачника [9]. Волновые свойства микрочастиц. Задачи из раздела 17 [3] и 45 задачника [9]. Микрочастица в потенциальной яме. Потенциальные барьеры. Квантовые числа. Задачи из раздела 18,19 [3] и 46, 47 задачника [9]. ПК-2 Атомная физика. Задачи из раздела 24 задачника [1].	2
9	2	РАЗДЕЛ 9 ЯДЕРНАЯ ФИЗИКА. ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И ЭЛЕМЕНТЫ СОВРЕМЕННОЙ ФИЗИКИ	Ядерная физика и физика элементарных частиц Задачи из раздела 24 задачника [1]. Контрольная работа. Обзорное занятие (по задачам разделов 17 – 24) [2

Лабораторные работы предусмотрены в объеме 36 ак. ч.

№ п/п	№ семестра	Тема (раздел) учебной дисциплины	Наименование занятий	Всего ча- сов/ из них часов в интерак- тивной форме
1	2	3	4	5
1	1	РАЗДЕЛ 1 МЕХАНИКА	ЛР № 1 «Изучение равноускоренного движения на машине Атвуда» ЛР № 3 «Изучение вращательного движения на маховике Обербека» ЛР № 63 «Определение коэффициентов сил трения качения методом наклонного маятника»	4
2	1	РАЗДЕЛ 2 МОЛЕКУЛЯРНО- КИНЕТИЧЕСКАЯ ТЕОРИЯ И ТЕРМОДИНАМИКА	ЛР № 11 «Определение отношения теплоёмкостей газа методом Клемана-Дезорма» ЛР № 82 «Измерение относительной влажности воздуха»	4
3	1	РАЗДЕЛ З ЭЛЕКТРОСТАТИКА	ЛР № 13 «Градуирование электростатического вольтметра с помощью электрометра Томсона» ЛР № 14 «Изучение топографии электростатического поля»	4
4	1	РАЗДЕЛ 4 ПОСТОЯННЫЙ ЭЛЕКТИРЕСКИЙ ТОК	ЛР № 16 «Определение омического сопротивления при помощи моста Уитстона» ЛР № 17 «Определение э. д. с. неизвестного источника методом компенсации»	2

5 ЭЛЕКТРОМАГНЕТИЗМ В ЭЛЕКТРИ ЛР № 72 ГИСТЕРВЗИ ОСЦИЛЛОГ ОСЦИЛЛОГ 2 РАЗДЕЛ 6 КОЛЕБАНИЯ И ЭЛЕКТРОМ ВОЛНЫ КОНТУРЕ СО ЛР № 30 ПОСЛЕДОВ ЛР № 31 ДВУХПРОВ И ДЛИНЫ ОПОЛЬНЫЙ И ДЛЕ № 36 ПОЛЯРИЗА ОПОЛЯРИЗА ОПОЛЬНЫЙ И ДЛЕ № 36 КВАНТОВАЯ И ВНЕШНИМ АТОМНАЯ ФИЗИКА 2 РАЗДЕЛ 8 КВАНТОВАЯ И ВНЕШНИМ АТОМНАЯ ФИЗИКА ЛР № 38 КВАНТОВО ЛР № 48 СО ДР № 35 ГАЗОВ» ЛР № 47 СО ДР № 45 СО КВРИСТАЛЛЬНЫЙ И ДР № 45 СО КВРИСТАЛЬНЫЙ И ДР № 45 СО КВИТИТЬНЫЙ И ДР № 45 СО КВИТЬНЫЙ И ДР № 45 СО КВИТИТЬНЫЙ И ДР № 45	нятие кривой намагничивания и петли а ферромагнитных веществ с помощью афа Изучение затухающих	5 4
5 ЭЛЕКТРОМАГНЕТИЗМ В ЭЛЕКТРИ ЛР № 72 ГИСТЕРВЗИ ОСЦИЛЛОГ ОСЦИЛЛОГ 2 РАЗДЕЛ 6 КОЛЕБАНИЯ И ЭЛЕКТРОМ КОНТУРЕ СО ЛР № 30 ПОСЛЕДОВ ЛР № 31 ДВУХПРОВ ЛЕ № 31 ДВУХПРОВ И ДЛИНЫ ОПОЛЬНЫЙ И ДЛИНЫ ОПОЛЬНЫЙ И ДЛИНЫ ОПОЛЬНЫЙ И ДЛИНЫ ОПОЛЬНЫЙ И ДЛЕ № 42 ДИФРАКЦИ ЛР № 36 ПОЛЯРИЗА И ДТОМНАЯ ФИЗИКА 7 РАЗДЕЛ 8 КВАНТОВАЯ И АТОМНАЯ ФИЗИКА ЛР № 38 ВНЕШНИМ АТОМНАЯ ФИЗИКА 8 ЛР № 35 ГАЗОВ» ЛР № 45 СО КВРИСТАЛЛИ ЛР № 45 СО КВРИСТАЛИ ЛР № 45 СО КВИТИ ЛР № 45 СО КВРИСТАЛИ ЛР № 45 СО КВИТИ ЛР № 45 СО КВРИСТАЛИ ЛР № 45 СО КВИТИ ЛР № 45 СО КВ	еском и магнитном полях» Снятие кривой намагничивания и петли за ферромагнитных веществ с помощью афа Изучение затухающих	4
КОЛЕБАНИЯ И ВОЛНЫ КОНТУРЕ С ЛР № 30 последов ЛР № 31 двухпров 2 РАЗДЕЛ 7 ВОЛНОВАЯ ОПТИКА 7 ВОЛНОВАЯ ОПТИКА 7 РАЗДЕЛ 8 КВАНТОВАЯ И АТОМНАЯ ФИЗИКА В Нешним АТОМНАЯ ФИЗИКА 8 ЛР № 35 газов» ЛР №45 6 Кристаль ЛР №45 6 Кристаль ЛР №45 6		
2 РАЗДЕЛ 7 ВОЛНОВАЯ ОПТИКА 7 ЛР № 33 и длины и Ньютона ЛР № 42 дифракци ЛР № 36 поляриза 2 РАЗДЕЛ 8 КВАНТОВАЯ И АТОМНАЯ ФИЗИКА 8 ЛР № 38 внешним АТОМНАЯ ФИЗИКА ЛР № 52 оквантово ЛР № 48 оквантово ЛР № 48 оквантово ЛР № 46 оквантово ЛР № 46 оквантово ЛР № 46 оквантово ЛР № 45 о	гнитных колебаний в колебательном помощью осциллографа» Вынужденные колебания в гельном электрическом контуре» Изучение электромагнитных волн в дной линии (Система Лехера)»	4
2 РАЗДЕЛ 8 ЛР № 38 ВНЕШНИМ АТОМНАЯ ФИЗИКА ЛР № 52 «КВАНТОВАЯ И ЛР № 52 «КВАНТОВО ЛР № 48 «Лр № 35 Газов» ЛР № 47 «ЛР № 46 «ЛР № 55 «КРИСТАЛЛЯ ЛР № 45 «КРИСТАЛЯ ЛР	Определение радиуса кривизны линзы ветовой волны с помощью колец Изучение дифракции света от онной решётки» Изучение основных явлений	4
	Изучение работы фотоэлемента с ротоэффектом» Изучение работы оптического о генератора» Опыт Франка и Герца» Изучение спектров излучения паров и Оффект Холла» Изучение п-н перехода» Исследование люминесценции фосфоров» Внутренний фотоэффект» Изучение электропроводности металлов водников»	6
2 РАЗДЕЛ 9 ЛР №88 « ЯДЕРНАЯ ФИЗИКА. дозиметр	Изучение работы индивидуального	36/0

4.5. Примерная тематика курсовых проектов (работ)

Курсовые проекты (работы) учебным планом не предусмотрены.

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Преподавание дисциплины «Физика» осуществляется в форме лекций, лабораторных работ и практических занятий.

Лекции проводятся в традиционной классно-урочной организационной форме, по типу управления познавательной деятельностью на 100 % являются традиционными классически-лекционными (объяснительно-иллюстративные), целесообразно использовать интерактивные технологии, в том числе мультимедийные лекции. Практические занятия и лабораторные работы организованы с использованием технологий развивающего обучения. Часть практического курса выполняется в виде традиционных практических занятий (объяснительно-иллюстративное решение задач) в объёме 36 часов. Остальная часть практического курса (36 часов) проводится с использованием интерактивных технологий, в том числе используется электронный (виртуальный) практикум; технологий, основанных на коллективных способах обучения, а также использованием компьютерной тестирующей системы.

Самостоятельная работа студента организована с использованием традиционных видов работы и интерактивных технологий. К традиционным видам работы (26 часов) относятся работа с лекционным материалом, работа с учебными пособиями, подготовка к получению допуска, выполнению и защите лабораторных работ, решение задач домашнего задания для практических занятий. К интерактивным технологиям целесообразно отнести отработку отдельных тем по электронным пособиям, подготовка к промежуточным контролям в интерактивном режиме, интерактивные консультации в режиме реального времени, выполнение индивидуальной работы по отдельной теме в мультимедийном формате.

Оценка полученных знаний, умений и навыков основана на модульно-рейтинговой системы РИТМ-МИИТ. Весь курс разбит на 9 модулей, представляющих собой логически завершенный объём учебной информации. Фонды оценочных средств освоенных компетенций включают как вопросы теоретического характера для оценки знаний, так и задания практического содержания (решение конкретных задач, работа с данными) для оценки умений и навыков. Теоретические знания проверяются путём применения таких организационных форм, как индивидуальные и групповые опросы, выполнение тестов с использованием компьютеров или на бумажных носителях.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

№ п/п	№ семестра	Тема (раздел) учебной дисциплины	Вид самостоятельной работы студента. Перечень учебно-методического обеспечения для самостоятельной работы	Всего часов
1	2	3	4	5
1	1	РАЗДЕЛ 1 МЕХАНИКА	Проработка лекционного материала, соответствующих разделов в учебниках и подготовка к тестам. Решение задач по теме и подготовка к контрольным работам. Проработка методических указаний к лабораторным работам по физике в процессе подготовки к их выполнению и защите.	11
2	1	РАЗДЕЛ 2 МОЛЕКУЛЯРНО- КИНЕТИЧЕСКАЯ ТЕОРИЯ И ТЕРМОДИНАМИКА	Проработка лекционного материала, соответствующих разделов в учебниках и подготовка к тестам. Решение задач по теме и подготовка к контрольным работам. Проработка методических указаний к лабораторным работам по физике в процессе подготовки к их выполнению и защите.	11
3	1	РАЗДЕЛ 3 ЭЛЕКТРОСТАТИКА	Проработка лекционного материала, соответствующих разделов в учебниках и подготовка к тестам. Решение задач по теме и подготовка к контрольным работам. Проработка методических указаний к лабораторным работам по физике в процессе подготовки к их выполнению и защите.	11
4	1	РАЗДЕЛ 4 ПОСТОЯННЫЙ ЭЛЕКТИРЕСКИЙ ТОК	Проработка лекционного материала, соответствующих разделов в учебниках и подготовка к тесту. Решение задач по теме и подготовка к контрольной работе. Проработка методических указаний к лабораторным работам по физике в процессе подготовки к их выполнению и защите.	11
5	1	РАЗДЕЛ 5 ЭЛЕКТРОМАГНЕТИЗМ	Проработка лекционного материала, соответствующих разделов в учебниках и подготовка к тесту. Решение задач по теме и подготовка к контрольной работе. Проработка методических указаний к лабораторным работам по физике в процессе подготовки к их выполнению и защите.	11
6	2	РАЗДЕЛ 6 КОЛЕБАНИЯ И ВОЛНЫ	Проработка лекционного материала, соответствующих разделов в учебниках и подготовка к тестам. Решение задач по теме и подготовка к контрольным работам. Проработка методических указаний к лабораторным работам по физике в процессе подготовки к их выполнению и защите.	22

7	2	РАЗДЕЛ 7 ВОЛНОВАЯ ОПТИКА	Проработка лекционного материала, соответствующих разделов в учебниках и подготовка к тестам. Решение задач по теме и подготовка к контрольным работам. Проработка методических указаний к лабораторным работам по физике в процессе подготовки к их выполнению и защите.	20
8	2	РАЗДЕЛ 8 КВАНТОВАЯ И АТОМНАЯ ФИЗИКА	Проработка лекционного материала, соответствующих разделов в учебниках и подготовка к тесту. Решение задач по теме и подготовка к контрольной работе. Проработка методических указаний к лабораторным работам по физике в процессе подготовки к их выполнению и защите.	22
9	1	РАЗДЕЛ 9 ЯДЕРНАЯ ФИЗИКА. ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И ЭЛЕМЕНТЫ СОВРЕМЕННОЙ ФИЗИКИ	Проработка лекционного материала, соответствующих разделов в учебниках и подготовка к тестам. Решение задач по теме и подготовка к контрольным работам.	9
ВСЕГО:				128

7. ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ ЛИТЕРАТУРЫ, НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

7.1. Основная литература

№ п/п	Наименование	Автор (ы)	Год и место издания Место доступа	Используется при изучении разделов, номера страниц
1	Курс физики	Трофимова Т. И.	М.: Академия, 0	Все разделы
2	Курс общей физики	Савельев Игорь Владимирович	"Лань", 2007 НТБ (ЭЭ); НТБ (уч.2); НТБ (уч.3)	Все разделы
3	Курс общей физики	Савельев Игорь Владимирович	"Лань", 2007 НТБ (ЭЭ); НТБ (уч.2); НТБ (уч.3)	Все разделы
4	Курс общей физики	Савельев Игорь Владимирович	"Лань", 2007 НТБ (ЭЭ); НТБ (уч.2); НТБ (уч.3)	Все разделы
5	Сборник	Под общ.ред. проф.	М.: МИИТ , 2006	Все разделы
6	Методические указания к лабораторным работам	Полный перечень методических указаний приведен в УМДД кафедры и включает 105 наименований	М.: МИИТ, 0	Все разделы
7	Физика. Часть І. Конспект лекций	Кокин С.М	М.: МИИТ , 2010	Раздел 1, Раздел 2, Раздел 3, Раздел 4, Раздел 5, Раздел 6
8	Физика. Часть II. Конспект лекций	Кокин С.М., Никитенко В.А.	М.: МИИТ, 2013	Раздел 2, Раздел 6, Раздел 7
9	Физика. Часть III. Конспект лекций	Никитенко В.А., Кокин С.М.	М.: МИИТ, 2007	Раздел 8, Раздел 9
10	Сборник задач по общему курсу физики	Волькенштейн В.С.	М.: ООО «Рада- Стайл», , 2005	Все разделы

7.2. Дополнительная литература

№ п/п	Наименование	Автор (ы)	Год и место издания Место доступа	Используется при изучении разделов, номера страниц
11	Задачник по физике	Чертов А.Г., Воробьёв А.А.	М.: Высшая школа, 2007	Все разделы
12	Вводное занятие в лабораториях кафедры физики :метод.указ. для студ. всех спец.	Селезнёв В.А.	М.: МИИТ, 2011	Все разделы
13	Курс физики	Детлаф Андрей Антонович; Яворский Борис Михайлович	Высш. шк., 2002 НТБ (фб.)	Все разделы
14	Механика : Сб. задач по физике.	Селезнёв В.А.	М.: МИИТ, 2007	Раздел 1
15	Постоянный ток. Магнитное поле. Электромагнитные колебания и волны. Оптика: сб. задач по физике	Селезнёв В.А.	М.: МИИТ, 2011	Раздел 4, Раздел 5, Раздел 6, Раздел 7

16	Механические колебания. Молекулярная физика. Термодинамика. Электростатика: сб. задач по физике	Селезнёв В.А.	М.: МИИТ, 2009	Раздел 2, Раздел 3, Раздел 6
17	Элементы специальной теории относительности. Квантовая физика. Атомная физика и физика атомного ядра. Сборник задач по физике:	Селезнёв В.А.	М.: МИИТ, 2013	Раздел 1, Раздел 8, Раздел 9

8. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ "ИНТЕРНЕТ", НЕОБХОДИМЫЕ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

http://www.fepo.ru/

http://www.edu.ru/

http://www.fgosvpo.ru/

http://www.i-exam.ru/

femida (МИИТ),

Учебно-методический комплекс кафедры «Физика» МИИТ

Электронный контент лектора

http://library.miit.ru/ - электронно-библиотечная система Научно-технической библиотеки МИИТ.

http://elibrary.ru/ - научно-электронная библиотека.

scholar.google.ru

Поисковые системы: Yandex, Google, Mail.

9. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

- 1. Операционная среда Windows;
- 2. Приложение MicrosoftOffice;
- 3. Антивирусные программы.
- 4. Тестовые программы, в том числе АСТ, ФЭПО, кафедральные;
- 5. Иллюстративный материал по курсу общей физики;
- 6. Доступ к Интернет;
- 7. Возможность пользования внутренней сетью МИИТа;
- 8. Электронная библиотека кафедры;
- 9. Видеотека кафедры.

10. ОПИСАНИЕ МАТЕРИАЛЬНО ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Организация рабочего места студента в университете (температурный режим, средняя площадь, приходящаяся на человека в учебной аудитории, временной режим работы, освещённость рабочего места) регламентируются соответствующимиСАНПиНами, соблюдение требований которых контролируется администрацией учебного заведения. Кроме того, каждый семестр перед началом работы в учебных лабораториях проводится инструктаж студентов по технике безопасности: студенты не допускаются к занятиям, пока не ознакомятся с инструкцией и не поставят подпись в соответствующей ведомости. Для лекционных занятий: лекционный зал, аудиовизуальный комплекс.

Для семинаров: компьютерный класс (локальная сеть, состоящая из 30 рабочих станций, сервера, компьютера преподавателя), интерактивная доска и связь с аудиовизуальным комплексом, выход в Интернет.

Для проведения лабораторных работ: комплекс электроизмерительных физических приборов; лабораторные установки тематического назначения соответствующие лабораторному практикуму.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

Обучающимся необходимо помнить, что качество полученного образования в немалой степени зависит от активной роли самого обучающегося в учебном процессе.

Обучающийся должен быть нацелен на максимальное усвоение подаваемого лектором материала, после лекции и во время специально организуемых индивидуальных встреч (консультаций) он может задать лектору интересующие его вопросы.

Лекционные занятия составляют основу теоретического обучения и должны давать систематизированные основы знаний по дисциплине, раскрывать состояние и перспективы развития соответствующей области науки, концентрировать внимание обучающихся на наиболее сложных и узловых вопросах, стимулировать их активную познавательную деятельность и способствовать формированию творческого мышления. Главная задача лекционного курса — сформировать у обучающихся системное представление об изучаемом предмете, обеспечить усвоение будущими специалистами основополагающего учебного материала, принципов и закономерностей развития соответствующей научно-практической области, а также методов применения полученных знаний, умений и навыков.

Основные функции лекций:

- ? познавательно-обучающая;
- ? развивающая;
- ? ориентирующе-направляющая;
- ? активизирующая;
- ? воспитательная:
- ? организующая;
- ? информационная.

Выполнение практических заданий и лабораторных работ служит важным связующим звеном между теоретическим освоением данной дисциплины и применением ее положений на практике. Они способствуют развитию самостоятельности обучающихся, более активному освоению учебного материала, являются важной предпосылкой формирования профессиональных качеств будущих специалистов.

Проведение практических занятий и лабораторных работ не сводится только к органическому дополнению лекционных курсов и самостоятельной работы обучающихся. Их вместе с тем следует рассматривать как важное средство проверки усвоения обучающимися тех или иных положений, даваемых на лекции, а также рекомендуемой для изучения литературы; как форма текущего контроля за отношением обучающихся к учебе, за уровнем их знаний, а, следовательно, и как один из важных каналов для своевременного подтягивания отстающих обучающихся.

Компетенции обучающегося, формируемые в результате освоения учебной дисциплины, рассмотрены через соответствующие знания, умения и владения. Для проверки уровня освоения дисциплины предлагаются вопросы к экзамену и тестовые материалы, где каждый вариант содержит задания, разработанные в рамках основных тем учебной дисциплины и включающие терминологические задания.

Фонд оценочных средств является составной частью учебно-методического обеспечения процедуры оценки качества освоения образовательной программы и обеспечивает повышение качества образовательного процесса и входит, как приложение, в состав

рабочей программы дисциплины.

Методические указания находятся в библиотеке МИИТа, в электронной форме на кафедре «Физика» (ауд. 14313, 14321, 14317).