МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА»

СОГЛАСОВАНО:

УТВЕРЖДАЮ:

Выпускающая кафедра ЭиЛ Заведующий кафедрой ЭиЛ

Первый проректор

О.Е. Пудовиков

В.С. Тимонин

27 сентября 2019 г.

25 марта 2022 г.

Кафедра

«Физика»

Авторы

Пауткина Анна Владимировна, к.ф.-м.н., доцент

Мухин Сергей Васильевич

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Физика

Специальность: 23.05.03 – Подвижной состав железных дорог

Специализация: Электрический транспорт железных дорог

Квалификация выпускника: Инженер путей сообщения

 Форма обучения:
 очная

 Год начала подготовки
 2017

Одобрено на заседании

Учебно-методической комиссии института

Протокол № 2 30 сентября 2019 г.

Председатель учебно-методической

комиссии

Одобрено на заседании кафедры

Протокол № 2 27 сентября 2019 г. Заведующий кафедрой

Н.А. Клычева

В.А. Никитенко

Рабочая программа учебной дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 1971

Подписал: Заведующий кафедрой Никитенко Владимир

Александрович

Дата: 27.09.2019

1. ЦЕЛИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Основной целью изучения учебной дисциплины «Физика» является формирование у обучающегося компетенций для следующих видов деятельности: профессиональной, научно-исследовательской.

Дисциплина предназначена для получения знаний для решения следующих профессиональных задач (в соответствии с видами деятельности):

Научно-исследовательская деятельность:

анализ научно-технической информации, отечественного и зарубежного опыта по тематике исследования;

участие в работах по организации и проведению экспериментов на действующих объектах по заданной методике;

обработка результатов экспериментальных исследований с применением современных информационных технологий и технических средств;

проведение вычислительных экспериментов с использованием стандартных программных средств с целью получения математических моделей процессов и объектов автоматизации и управления;

подготовка данных и составление обзоров, рефератов, отчетов, научных публикаций и докладов на научных конференциях и семинарах, участие во внедрении результатов исследований и разработок;

организация защиты объектов интеллектуальной собственности и результатов исследований и разработок как коммерческой тайны предприятия.

Изучение курса общей физики в техническом университете обусловлено возрастающей ролью фундаментальных наук в подготовке бакалавра. Это связано с тем, что внедрение современных высоких технологий в практическую инженерную деятельность предполагает основательное знакомство работников с физическими основами протекания соответствующих процессов, с классическими и с новейшими методами физических исследований. Данный курс даёт возможность будущим бакалаврам получить требуемые знания в области физики, а также приобрести навыки их дальнейшего пополнения, используя в этих целях различные (в том числе — электронные) источники информации. Более того, программа дисциплины «Физика» сформирована таким образом, чтобы не только дать студентам представление об основных разделах физики, познакомить их с наиболее важными экспериментальными и теоретическими результатами, но и провести демаркацию между научным и антинаучным подходом в изучении окружающего мира. Дисциплина учит студентов строить модели происходящих явлений и процессов, прививая понимание причинно-следственной связи между ними, формируя у будущих бакалавров подлинно научное мировоззрение.

Кроме того, физика создает универсальную базу для изучения общепрофессиональных и специальных дисциплин, закладывает фундамент последующего обучения в магистратуре, аспирантуре. Она даёт цельное представление о физических законах окружающего мира в их единстве и взаимосвязи, вооружает бакалавров необходимыми знаниями для решения научно-технических задач в теоретических и прикладных аспектах.

Задачи дисциплины:

- формирование у студентов основ естественнонаучной картины мира,
- освоение основных физических теорий, позволяющих описать явления в природе, и пределов применимости этих теорий для решения современных и перспективных технологических задач;
- овладение фундаментальными принципами и методами решения научно-технических задач, приобретение навыков экспериментальных исследований и оценки степени достоверности получаемых результатов;
- формирование навыков по применению положений фундаментальной физики к

грамотному научному анализу ситуаций, с которыми бакалавру придётся сталкиваться при создании новой техники и новых технологий;

- ознакомление студентов с историей и логикой развития физики и основных её открытий.

В результате освоения дисциплины «Физика» студент должен научиться использовать законы физики в важнейших практических приложениях; познакомиться с основными физическими величинами, знать их определение, смысл, способы и единицы их измерения; представлять себе фундаментальные физические эксперименты и их роль в развитии науки. Кроме того, студент должен приобрести навыки работы с приборами и оборудованием современной физической лаборатории; навыки использования различных методик физических измерений и обработки экспериментальных данных; навыки проведения адекватного физического и математического моделирования, а также применения методов физико-математического анализа к решению конкретных естественнонаучных и технических проблем.

Физика, как наука о наиболее общих законах природы в той или иной степени имеет непосредственную связь практически со всеми дисциплинами, изучаемыми на протяжении всего институтского курса. В частности, на законах физики основана работа всех современных автоматических устройств передачи, сбора и обработки информации. Именно поэтому в процессе чтения лекций делается упор на физический смысл явлений, наблюдаемых в окружающем мире.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Учебная дисциплина "Физика" относится к блоку 1 "Дисциплины (модули)" и входит в его базовую часть.

2.1. Наименования предшествующих дисциплин

Для изучения данной дисциплины необходимы следующие знания, умения и навыки, формируемые предшествующими дисциплинами:

, 1 1 13	1		
2.1.1. Физика:			
Знания:			
Умения:			
Навыки:			

2.2. Наименование последующих дисциплин

Результаты освоения дисциплины используются при изучении последующих учебных дисциплин:

2.2.1. Электротехника и электроника

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫЕ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

В результате освоения дисциплины студент должен:

№ п/п	Код и название компетенции	Ожидаемые результаты
1	ОК-1 способностью демонстрировать знание базовых ценностей мировой культуры и готовностью опираться на них в своем личностном и общекультурном развитии, владеть культурой мышления, способностью к обобщению, анализу, восприятию информации, постановке цели и выбору путей ее достижения;	Знать и понимать: методами расчета и проектирования тяговых электрических машин, методами оценки показателей качества тяговых электрических машин с использованием современных информационных технологий, диагностических комплексов и систем менеджмента качества. Уметь: применять методы математического анализа и моделирования, теоретического и экспериментального исследования Владеть: высокой естественнонаучной компетентностью, навыками работы теоретического и экспериментального исследования
2	ОПК-1 способностью применять методы математического анализа и моделирования, теоретического и экспериментального исследования;	Знать и понимать: иметь представление о современной физической картине мира и эволюции Вселенной, пространственно- временных закономерностях строения вещества Уметь: применять знания о современной физической картине мира и эволюции Вселенной, о пространственно- временных закономерностях строения вещества при решении практических задач Владеть: высокой естественнонаучной компетентностью и обладать пониманием явлений окружающего мира и явлений природы, навыками работы теоретического и экспериментального исследования
3	ОПК-2 способностью использовать знания о современной физической картине мира и эволюции Вселенной, пространственновременных закономерностях, строении вещества для понимания окружающего мира и явлений природы.	Знать и понимать: базовые ценности мировой культуры Уметь: опереться на них в своём личностном и общекультурном развитии Владеть: культурой мышления, способностью к обобщению, анализу, восприятию информации, постановке цели и выбору путей её достижения

4. ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ) В ЗАЧЕТНЫХ ЕДИНИЦАХ И АКАДЕМИЧЕСКИХ ЧАСАХ

4.1. Общая трудоемкость дисциплины составляет:

12 зачетных единиц (432 ак. ч.).

4.2. Распределение объема учебной дисциплины на контактную работу с преподавателем и самостоятельную работу обучающихся

	Количеств	о часов		
Вид учебной работы	Всего по учебному плану	Семестр 1	Семестр 2	Семестр 3
Контактная работа	194	77,15	59,15	58,15
Аудиторные занятия (всего):	194	77	59	58
В том числе:				
лекции (Л)	72	36	18	18
практические (ПЗ) и семинарские (С)	54	18	18	18
лабораторные работы (ЛР)(лабораторный практикум) (ЛП)	54	18	18	18
Контроль самостоятельной работы (КСР)	14	5	5	4
Самостоятельная работа (всего)	139	49	49	41
Экзамен (при наличии)	99	54	0	45
ОБЩАЯ трудоемкость дисциплины, часы:	432	180	108	144
ОБЩАЯ трудоемкость дисциплины, зач.ед.:	12.0	5.0	3.0	4.0
Текущий контроль успеваемости (количество и вид текущего контроля)	ПК1, ПК2	ПК1, ПК2	ПК1, ПК2	ПК1, ПК2
Виды промежуточной аттестации (экзамен, зачет)	3Ч, ЭК	ЭК	3Ч	ЭК

4.3. Содержание дисциплины (модуля), структурированное по темам (разделам)

							ти в часах ой форме		Формы текущего
№ π/π	Семестр	Тема (раздел) учебной дисциплины	П	JIP	ПЗ/ТП	KCP	CP	Всего	контроля успеваемости и промежу-точной аттестации
1	2	3	4	5	6	7	8	9	10
1	1	Раздел 1 МЕХАНИКА	12/2	6	6/4	1	19	44/6	
2	1	Тема 1.1 Предмет и задачи физики. Механика. Кинематика: основные понятия. Движение по прямой: скорость, ускорение. Криволинейное движение. Нормальное и тангенциальное ускорение. Кинематика вращательного движения: угловая скорость и угловое ускорение, их связь с линейной скоростью и ускорением.	2					2	
3	1	Тема 1.2 Инерциальные системы отсчета и первый закон Ньютона. Второй закон Ньютона. Масса, импульс, сила. Уравнение движения материальной точки. Третий закон Ньютона и закон сохранения импульса. Закон Всемирного тяготения. Силы трения.	2/2					2/2	
4	1	Тема 1.3 Динамика вращательного движения. Момент силы; момент инерции; момент импульса. Теорема Штейнера. Основной закон динамики вращательного движения в случае системы точек и в случае твёрдого тела. Закон сохранения момента импульса. Гироскопы.	2					2	

							ти в часах		Формы текущего
№ п/п	Семестр	Тема (раздел) учебной дисциплины	Л	ЛР	ПЗ/ТП	KCP	C.B.	Всего	контроля успеваемости и промежу-точной аттестации
1	2	3	4	5	6	7	8	9	10
5	1	Тема 1.4 Работа переменной силы. Мощность. Кинетическая энергия тела при поступательном движении (вывод формулы). Вычисление второй космической скорости. Кинетическая энергия тела при вращательном движении. Поле сил. Консервативные и неконсервативные силы, примеры. Потенциальная энергия в поле сил тяжести, потенциальная энергия упруго деформированной пружины (вывод	4 2	5	6	7	8	3	10
6	1	формулы). Тема 1.5 Принцип относительности Галилея. Постулаты Эйнштейна в специальной теории относительности. Преобразования Галилея в классической механике. Преобразования Лоренца.	2					2	
7	1	Тема 1.6 Следствия из преобразований Лоренца. Сложение скоростей в специальной теории относительности. Релятивистская динамика. Полная энергия тела в СТО. Энергия покоя, кинетическая энергия тела. Связь релятивистской энергии и импульса.	2					2	
8	1	Раздел 2	6/2	4	4/2	1	8	23/4	

					чебной де числе инт			:/	Формы текущего
№ п/п	Семестр	Тема (раздел) учебной дисциплины	Л	all all	113/111	KCP	GJ	Всего	контроля успеваемости и промежу- точной аттестации
1	2	3	4	5	6	7	8	9	10
-	1	ЭЛЕКТРОСТАТИКА	2 /2					0.10	
9	1	Тема 2.1 Закон Кулона. Напряженность электростатического поля. Силовые линии. Теорема Гаусса в интегральной форме и ее применение для расчета электрических полей в вакууме.	2/2					2/2	
10	1	Тема 2.2 Работа по перемещению заряда. Потенциальная энергия в электрическом поле. Потенциал, его связь с энергией и работой, с напряженностью поля. Эквипотенциальные поверхности.	2			1		3	
11	1	Тема 2.3 Диэлектрики в электрическом поле. Полярные и неполярные молекулы. Поляризованность. Вектор электрического смещения. Применение теоремы Гаусса в интегральной форме для расчета электрических полей в диэлектрике.	2					2	ПК1
12	1	Раздел 3 ЭЛЕКТРОДИНАМИКА	4/2	2	2/2	1	5	14/4	
13	1	Тема 3.1 Проводники в электрическом поле Электроемкость. Конденсаторы. Энергия электрического поля. Сила тока, плотность тока. Закон Ома для однородного участка цепи. Электрическое сопротивление.	2			1		3	
14	1	Тема 3.2 Закон Ома в дифференциальной форме. Э.д.с. Законы Ома для	2/2					2/2	

							ти в часах	:/	Формы
№ п/п	Семестр	Тема (раздел) учебной дисциплины	П	all diff	числе инт	КСР КСР	ой форме С	Всего	текущего контроля успеваемости и промежу-точной аттестации
1	2	3	4	5	6	7	8	9	10
		участка цепи, содержащего источник э.д.с. и для замкнутой цепи. Закон Джоуля- Ленца. Правила Кирхгофа.							
15	1	Раздел 4 МАГНЕТИЗМ	14/1	6	6/6	2	17	45/7	
16	1	Раздел 4 ЭКЗАМЕН						54	ЭК
17	1	Тема 4.1 Электрический ток в вакууме. Явление термоэлектронной эмиссии. Вакуумный диод. Магнитное поле постоянных магнитов и проводников с током. Закон Ампера. Вектор магнитной индукции. Магнитное взаимодействие постоянных токов.	2					2	
18	1	Тема 4.2 Закон Био-Савара- Лапласа. Теорема о циркуляции вектора магнитной индукции, примеры применения теоремы. Действие магнитного поля на рамку с током. Магнитный момент витка с током.	2/1					2/1	
19	1	Тема 4.3 Сила Лоренца. Движение заряженных частиц в магнитном поле. Циклотрон. Эффект Холла. Поток вектора магнитной индукции. Теорема Гаусса для магнитного поля. Работа по перемещению проводника с током в магнитном поле.	2			1		3	
20	1	Тема 4.4	2					2	

							ти в часах ой форме	:/	Формы текущего
№ п/п	Семестр	Тема (раздел) учебной дисциплины	Л	JIP	ПЗ/ТП	KCP	CP	Всего	контроля успеваемости и промежу- точной аттестации
1	2	3	4	5	6	7	8	9	10
		Магнитное поле в веществе. Намагниченность. Напряжённость магнитного поля. Закон полного тока. Магнитная проницаемость. Диа-, парамагнетизм.							
21	1	Тема 4.5 Ферромагнетизм. Объёмная плотность энергии магнитного поля. Явление электромагнитной индукции.	2			1		3	
22	1	Тема 4.6 Явление самоиндукции. Индуктивность. Явление взаимной индукции. Работа трансформатора.	2					2	
23	1	Тема 4.7 Система уравнений Максвелла в интегральной форме. Электромагнитное поле.	2					2	ПК2
24	2	Раздел 5 КОЛЕБАНИЯ И ВОЛНЫ	4/2	4	4/4	1	10	23/6	
25	2	Тема 5.1 Периодические процессы. Гармонические колебания. Собственные колебания механических систем. Уравнение колебаний. Маятники. Энергия колебаний. Затухающие, вынужденные колебания. Уравнение вынужденных колебаний. Амплитуда и фаза колебаний. Резонанс. Автоколебания. Колебания в электрических цепях.	2/2			1		3/2	

					чебной де числе инт				Формы текущего
№ п/п	Семестр	Тема (раздел) учебной дисциплины	Л	dII.	ПЗ/ТП	KCP	CD	Всего	контроля успеваемости и промежу- точной аттестации
1	2	3	4	5	6	7	8	9	10
		Незатухающие и затухающие колебания. Вынужденные электрические колебания. Резонанс. Автоколебательные системы.							
26	2	Тема 5.2 Сложение гармонических колебаний одинаковой частоты. Сложение колебаний, происходящих по одному направлению и по двум перпендикулярным направлениям. Волны. Виды волн. Уравнение бегущей волны. Фазовая скорость. Волновое уравнение. Уравнение волны в упругих средах. Поток энергии.	2					2	
27	2	Раздел 6 ВОЛНОВАЯ ОПТИКА	6/2	6	6/4	1	17	36/6	
28	2	Тема 6.1 Сложение волн. Интерференция когерентных волн. Стоячие волны. Электромагнитные волны. Излучение диполя. Уравнения Максвелла. Следствия из уравнений Максвелла. Скорость распространения, энергия, интенсивность электромагнитных волн. Стоячие волны. Опыты Герца.	2/2			1		3/2	
29	2	Тема 6.2 Шкала электромагнитных волн. Световые волны. Интерференция света.	2					2	

							ти в часах ой форме		Формы текущего
№ п/п	Семестр	Тема (раздел) учебной дисциплины	Л	JIP	ПЗ/ТП	KCP	CP C	Всего	контроля успеваемости и промежу-точной аттестации
1	2	3	4	5	6	7	8	9	10
		Оптическая разность хода. Интерференция в тонких пленках. Применение интерференции. Голография. Принцип Гюйгенса-Френеля. Метод зон Френеля. Метод зон Френеля. Прямолинейное распространение света. Дифракция сферических волн на круглом отверстии и непрозрачном диске. Дифракция волн на одной и двух щелях. Дифракционная решетка. Разрешающая способность оптических приборов. Рентгеновские лучи. Условие Вульфа-Брэгга. Методы рентгено-структурного анализа.							
30	2	Тема 6.3 Фазовая и групповая скорости волн. Дисперсия света. Нормальная и аномальная дисперсия. Поглощение и рассеяние света. Поляризация при отражении, преломлении и прохождении через кристаллы. Законы Брюстера иМалюса Элиптически поляризованный свет. Искусственная анизотропия, про являющаяся под действием давления, электрического поля. Вращение плоскости поляризации.	2					2	ПК1
31	2	Раздел 7 КВАНТОВАЯ ОПТИКА	2/1	2	2/2	1	5	12/3	

							ти в часах	:/	Формы текущего
№ п/п	Семестр	Тема (раздел) учебной дисциплины	Л	JIP	ПЗ/ТП	KCP	CP	Всего	контроля успеваемости и промежу- точной аттестации
1	2	3	4	5	6	7	8	9	10
32	2	Тема 7.1 Тепловое излучение и его законы. Распределение энергии в спектре излучения абсолютно черного тела. Формула Планка. Фотоэффект. Уравнение Эйнштейна. Импульс фотона. Давление света. Эффект Комптона Излучение света атомами. Спектр атома водорода. Переходы электронов в атоме, соответствующие излучению и поглощению света. Рентгеновский спектр.	2/1					3/1	
33	2	Раздел 8 ТЕРМОДИНАМИКА И МОЛЕКУЛЯРНАЯ ФИЗИКА	6/2	6	6/4	2	17	37/6	
34	2	Тема 8.1 Молекулярная физика. Идеальный газ. Уравнение состояния идеального газа. Основное уравнение молекулярно- кинетической теории газа. Средняя энергия молекул. Распределение Максвелла для скоростей молекул. Опытное распределение молекул по скоростям. Энергия моля газа и одной молекулы. Распределение Больцмана. Среднее число столкновений и средняя длина свободного пробега молекул. Явления переноса (теплопроводность, диффузия, внутреннее трение)	2/2			1		3/2	

					чебной де числе инт				Формы текущего
№ п/п	Семестр	Тема (раздел) учебной дисциплины	Л	JIP	ПЗ/ТП	KCP	CP	Всего	контроля успеваемости и промежу- точной аттестации
1	2	3	4	5	6	7	8	9	10
35	2	Тема 8.2 Внутренняя энергия газа и ее изменение 1 закон термодинамики. Молекулярнокинетическая теория теплоемкости. Сравнение с опытом. Необходимость квантовых представлений. Адиабатный процесс. Работа, совершаемая газом в различных условиях. Круговой процесс. Обратимый и необратимый процессы. Тепловая машина. Цикл Карно, его КПД.2-й закон термодинамики.	2					2	
36	2	Тема 8.3 Энтропия. Статистическое толкование.1 начало термодинамики в случае изменения числа частиц в системе. Химический потенциал. Реальные газы. Взаимодействие между молекулами. Уравнение Ван-дер-Ваальса. Кристаллическое состояние вещества. Внутренняя энергия реального газа.	2	10	10/14	1	41	3	3Ч, ПК2
37	3	Раздел 9 КВАНТОВАЯ ФИЗИКА. АТОМНАЯ И ЯДЕРНАЯ ФИЗИКА	18/7	18	18/14	4	41	99/21	
38	3	Раздел 9 ЭКЗАМЕН						45	ЭК
39	3	Тема 9.1 Гипотеза де Бройля. Опыты Дэвиссона и Джермера. Дифракция микрочастиц. Принцип неопределенности Гейзенберга. Волновая функция, ее статистический смысл	2/2			1		3/2	

					чебной де числе инт		ти в часах ой форме	:/	Формы текущего
№ п/п	Семестр	Тема (раздел) учебной дисциплины	Л	JIP	ПЗ/ТП	KCP	CP	Всего	контроля успеваемости и промежу- точной аттестации
1	2	3	4	5	6	7	8	9	10
		и условия, которым она должна удовлетворять. Уравнение Шредингера. Уравнение Шредингера для стационарных состояний. Свободная микрочастица. Микрочастица в одномерной потенциальной яме.							
40	3	Тема 9.2 Микрочастица у одномерного потенциального порога и барьера. Туннельный эффект. Квантовый осциллятор. Квантово-механическое описание атомов. Стационарное уравнение Шредингера для атома водорода. Волновые функции и квантовые числа. Правила отбора для квантовых переходов. Опыт Штерна и Герлаха. Эффект Зеемана.	2			1		3	
41	3	Тема 9.3 Многоэлектронные атомы. Принцип Паули. Заполнение электронных орбит в атоме. Принцип построения таблицы Менделеева. Виды химической связи. Аморфные тела, кристаллы. Дефекты кристаллической решётки.	2			1		3	
42	3	Тема 9.4 Кристалл, как периодическая квантовая структура Образование зон энергий. Зонные схемы металла, диэлектрика,	2/2			1		3/2	

							ти в часах ой форме		Формы текущего
№ п/п	Семестр	Тема (раздел) учебной дисциплины	Л	ЛР	ПЗ/ТП	KCP	CP	Всего	контроля успеваемости и промежу- точной аттестации
1	2	3	4	5	6	7	8	9	10
		полупроводника. Квантовые системы из одинаковых частиц. Вырожденные и невырожденные коллективы. Квантовые статистические распределения Бозе-Эйнштейна и Ферми-Дирака и их связь с распределением Максвелла-Больцмана.							
43	3	Тема 9.5 Плотность числа квантовых состояний. Энергия Ферми. Электронный газ в металлах. Подвижность носителей заряда в кристаллах. Зависимость электропроводности металлов от температуры. Электронных газ в полупроводниках (собственных и примесных). Дырки. Зависимость концентрации носителей заряда и электропроводности от температуры в собственных и примесных полупроводниках.	2					2	ПК1
44	3	Тема 9.6 Сверхпроводимость. Сверхтекучесть. Электропроводность полупроводников в сильных электрических полях. Поглощение света, внутренний фотоэффект. Излучение света. Лазеры.	2					2	
45	3	Тема 9.7 Контактные явления на примере p-n-перехода: выпрямляющее	2/2					2/2	

					чебной де числе инт			<u>:/</u>	Формы текущего
№ π/π	Семестр	Тема (раздел) учебной дисциплины	Л	JIP	ПЗ/ТП	KCP	d)	Всего	контроля успеваемости и промежу-точной аттестации
1	2	3	4	5	6	7	8	9	10
		действие, фотоэффект, излучение света. Перспективы нанотехнологий. Строение ядра атома. Радиоактивность. Основные понятия радиационной дозиметрии.							
46	3	Тема 9.8 Ядерные реакции. Энергия связи. Дефект массы. принципиальные основы ядерной энергетики (реакции деления и синтеза). Виды фундаментальных взаимодействий. Элементарные частицы. Античастицы. Адроны, лептоны, частицы-переносчики взаимодействий. Кварки.	2					2	
47	3	Тема 9.9 Основные достижения и проблемы субъядерной физики. Попытки объединения фундаментальных взаимодействий. Достижения наблюдательной астрономии. Современные космологические представления об эволюции Вселенной. Модель Большого взрыва. Современные научноисследовательских программы в области физики, модели. Революционные изменения в технике и технологиях как следствие научных достижений в области физики. Физическая картина	2/1					2/1	ПК2

				Виды у в том		Формы текущего			
№ п/п	Семестр		Л	JIP	ПЗ/ТП	KCP	CP	Всего	контроля успеваемости и промежу- точной аттестации
1	2	3	4	5	6	7	8	9	10
		мира как философская категория. Антропный принцип.							
48		Всего:	72/21	54	54/42	14	139	432/63	

4.4. Лабораторные работы / практические занятия

Лабораторные работы предусмотрены в объеме 54 ак. ч.

№ п/п	№ семестра	Тема (раздел) учебной дисциплины	Наименование занятий	Всего ча- сов/ из них часов в интерак- тивной форме
1	2	3	4	5
1	1	РАЗДЕЛ 1 МЕХАНИКА	№ 1 «Изучение равноускоренного движения на машине Атвуда» № 3 «Изучение вращательного движения на маховике Обербека» № 63 «Определение	6
	1	РАЗДЕЛ 2 ЭЛЕКТРОСТАТИКА	коэффициентов сил трения качения методом наклонного маятника» № 13 «Градуирование электростатического вольтметра с помощью электрометра Томсона»	4
2			№ 14 «Изучение топографии электростатического поля»	
3	1	РАЗДЕЛ 3 ЭЛЕКТРОДИНАМИКА	№ 16 «Определение омического сопротивления при помощи моста Уитстона» № 17 «Определение э. д. с. неизвестного источника методом компенсации»	2
4	1	РАЗДЕЛ 4 МАГНЕТИЗМ	№ 22 «Изучение законов движения электрона в электрическом и магнитном полях» № 72 Снятие кривой намагничивания и петли гистерезиса ферромагнитных веществ с помощью осциллографа	6
5	2	РАЗДЕЛ 5 КОЛЕБАНИЯ И ВОЛНЫ	№ 29 «Изучение затухающих электромагнитных колебаний в колебательном контуре с помощью осциллографа» № 30 «Вынужденные колебания в последовательном электрическом контуре»№ 31 «Изучение электромагнитных волн в двухпроводной линии (Система Лехера)»	4
6	2	РАЗДЕЛ 6 ВОЛНОВАЯ ОПТИКА	№ 33 «Определение радиуса кривизны линзы и длины световой волны с помощью колец Ньютона» № 42 «Изучение дифракции света от дифракционной решётки»№ 36 «Изучение основных явлений поляризации света»	6
7	2	РАЗДЕЛ 7 КВАНТОВАЯ ОПТИКА	№ 38 «Изучение работы фотоэлемента с внешним фотоэффектом»	2
8	2	РАЗДЕЛ 8 ТЕРМОДИНАМИКА И МОЛЕКУЛЯРНАЯ ФИЗИКА	№ 11 «Определение отношения теплоёмкостей газа методом Клемана-Дезорма» № 82 «Измерение относительной влажности воздуха»	6

№ п/п	№ семестра	Тема (раздел) учебной дисциплины	Наименование занятий	Всего ча- сов/ из них часов в интерак- тивной форме
1	2	3	4	5
9	3	РАЗДЕЛ 9 КВАНТОВАЯ ФИЗИКА. АТОМНАЯ И ЯДЕРНАЯ ФИЗИКА	ЛР №48 «Опыт Франка и Герца» Лр № 35 «Изучение спектров излучения паров и газов»ЛР №47 «Эффект Холла»ЛР №45 «Внутренний фотоэффект»ЛР №51 «Изучение электропроводности металлов и полупроводников»ЛР 94 «Построение характеристических кривых солнечных батарей»ЛР №88 «Изучение работы индивидуального дозиметра»ЛР №66 «Релятивистские законы движения микрочастиц»ЛР №84 «Изучение космических лучей»	18
			ВСЕГО:	54/0

Практические занятия предусмотрены в объеме 54 ак. ч.

№ п/п	№ семестра	Тема (раздел) учебной дисциплины	Наименование занятий	Всего ча- сов/ из них часов в интерак- тивной форме
1	2	3	4	5
1	1	РАЗДЕЛ 1 МЕХАНИКА	Кинематика поступательного и вращательного движения. Задачи (§ 1 [2] или из § 1 [3]) Динамика поступательного движения. Законы Ньютона. Задачи (§ 2 [2] или из § 2 и § 4 [3])Динамика вращательного движения. Работа и	6/4
			энергия. Законы сохранения. Задачи из раздела 3 [1] (или из § 2 и § 3 [2] или из § 2, § 3 и § 4 [3])	
	1	РАЗДЕЛ 2 ЭЛЕКТРОСТАТИКА	Электростатика.	4 / 2
2			Закон Кулона, напряжённость и потенциал электрического поля. Принцип суперпозиции. Задачи из раздела 4 [1] (или из § 9 [2] или из § 13, § 14 и § 15 [3])	
	1	РАЗДЕЛ 3 ЭЛЕКТРОДИНАМИКА	Проводники в электрическом поле.	2/2
3			Электрические конденсаторы. Задачи из раздела 5 [1] (или из § 9 [2] или из § 15, § 17 и § 18 [3])Постоянный электрический ток. Задачи из раздела 6 [1] (или из § 10 [2] или из § 19 и § 20 [3])	
4	1	РАЗДЕЛ 4 МАГНЕТИЗМ	Магнитное поле. Силы в магнитном поле. Задачи из раздела 7 [1] (или из § 11 [2] или из § 21, § 22 и § 23 [3])Магнитное поле в веществе.	6/6
			Электромагнетизм.Задачи из раздела 8 [1] (или из § 11 [2] или из § 25, § 26 и § 27 [3])	

№ п/п	№ семестра	Тема (раздел) учебной дисциплины	Наименование занятий	Всего ча- сов/ из них часов в интерак- тивной форме
1	2	3	4	5
5	2	РАЗДЕЛ 5 КОЛЕБАНИЯ И ВОЛНЫ	Гармонические колебания. Маятники. §12 [2] § 6 [3]Затухающие колебания. § 12 [2] § 6 [3]Сложение колебаний § 12 [2] § 6 [3]Вынужденные колебания. § 12 [2] § 6 [3]Электромагнитные колебания. § 14 [2]Уравнение плоской волны. Стоячая волна. § 12 [2] § 7 [3]	4/4
6	2	РАЗДЕЛ 6 ВОЛНОВАЯ ОПТИКА	Интерференция света. § 16 [2] § 30 [3] Дифракция света. § 16 [2] § 31 [3]Поляризация света. Поглощение и рассеяние света. § 16 [2] § 32 [3]	6 / 4
7	2	РАЗДЕЛ 7 КВАНТОВАЯ ОПТИКА	Тепловое излучение. § 18 [2] § 34 [3]	2/2
8	2	РАЗДЕЛ 8 ТЕРМОДИНАМИКА И МОЛЕКУЛЯРНАЯ ФИЗИКА	Уравнение газового состояния. Смесь газов. § 5 [2] § 8 [3]Основное уравнение кинетической теории газов. § 5 [2] § 9 [3]Распределение Максвелла по скоростям. § 5 [2] § 10 [3]1-е начало термодинамики. Внутренняя энергия идеального газа, работа газа в изопроцессах. § 5 [2] § 11 [3]Круговые процессы. § 5 [2] § 11 [3] Энтропия. § 5 [2] § 11 [3]	6/4
9	3		Волновые свойства микрочастиц. Задачи из раздела 17 [1] (или из § 45 [3] или из § 19 [2])Микрочастица в потенциальной яме. Потенциальные барьеры. Задачи из раздела 18задачника [1] (или из § 46 [3])Электрон в атоме водорода. Многоэлектронные атомы. Задачи из раздела19 задачника [1] (или из § 47 [3])Кристаллическая структура твёрдых тел. Задачи из раздела20 задачника [1] (или из § 49 [3]) Основы квантовой статистики. Электронный газ в металле. Задачи из раздела 21 задачника [1] (или из § 51 [3])Электрические свойства полупроводников. Задачи из раздела 22 задачника [1] (или из § 51 [3])Поглощение и излучение света в полупроводниках. Контактные явления. Задачи из раздела 23 задачника [1]Атомная физика. Элементарные частицы. Задачи из раздела 24 задачника [1] (или из §§ 40-44 [3] или из § 21-23 [2])	18 / 14
			ВСЕГО:	54/42

4.5. Примерная тематика курсовых проектов (работ)

Курсовые проекты (работы) не предусмотрены.

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Преподавание дисциплины «Физика» осуществляется в форме лекций, лабораторных работ и практических занятий.

Лекции проводятся в традиционной классно-урочной организационной форме, по типу управления познавательной деятельностью на 71 % являются традиционными классически-лекционными (объяснительно-иллюстративные), на 29% - с использованием интерактивных технологий, в том числе мультимедийных.

Практические занятия и лабораторные работы организованы с использованием технологий развивающего обучения. Весь практический курс выполняется на 22% в виде традиционных практических занятий (объяснительно-иллюстративное решение задач) (за весь период обучения 54 часа). В 78% используются интерактивные технологии, в том числе электронный (виртуальный) практикум в демонстрационном варианте; технологий, основанных на коллективных способах обучения, а также использованием компьютерной тестирующей системы.

Самостоятельная работа студента организована с использованием традиционных видов работы (целесообразно использование интерактивных технологий). К традиционным видам работы (139 часов) относятся работа с лекционным материалом, работа с учебными пособиями, подготовка к получению допуска, выполнению и защите лабораторных работ, решение задач домашнего задания для практических занятий. К интерактивным технологиям можно будет отнести отработку отдельных тем по электронным пособиям, подготовка к промежуточным контролям в интерактивном режиме, интерактивные консультации в режиме реального времени, выполнение индивидуальной работы по отдельной теме в мультимедийном формате.

Оценка полученных знаний, умений и навыков основана на модульно-рейтинговой системы РИТМ-МИИТ. Весь курс разбит на 9 разделов (модулей), представляющих собой логически завершенный объём учебной информации. Фонды оценочных средств освоенных компетенций включают как вопросы теоретического характера для оценки знаний, так и задания практического содержания (решение конкретных задач, работа с данными) для оценки умений и навыков. Теоретические знания проверяются путём применения таких организационных форм, как индивидуальные и групповые опросы, выполнение тестов с использованием компьютеров или на бумажных носителях.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

№ п/п	№ семестра	Тема (раздел) учебной дисциплины	Вид самостоятельной работы студента. Перечень учебно-методического обеспечения для самостоятельной работы	Всего часов
1	1	3 РАЗДЕЛ 1 МЕХАНИКА	4 - Проработка лекционного материала, соответствующих разделов в учебниках и	5 19
			подготовка к тестам. - Решение задач по теме и подготовка к контрольным работам Проработка методических указаний к лабораторным работам по физике в процессе подготовки к их выполнению и защите.	
2	1	РАЗДЕЛ 2 ЭЛЕКТРОСТАТИКА	- Проработка лекционного материала, соответствующих разделов в учебниках и подготовка к тестам.	8
3	1	РАЗДЕЛ 3 ЭЛЕКТРОДИНАМИКА	 Проработка лекционного материала, соответствующих разделов в учебниках и подготовка к тестам. Решение задач по теме и подготовка к контрольным работам. Проработка методических указаний к лабораторным работам по физике в процессе подготовки к 	5
4	1	РАЗДЕЛ 4 МАГНЕТИЗМ	их выполнению и защите. - Проработка лекционного материала, соответствующих разделов в учебниках и подготовка к тестам. - Решение задач по теме и подготовка к контрольным работам Проработка методических указаний к лабораторным работам по физике в процессе подготовки к их выполнению и защите.	17
5	2	РАЗДЕЛ 5 КОЛЕБАНИЯ И ВОЛНЫ	- Проработка лекционного материала, соответствующих разделов в учебниках и подготовка к тестам. - Решение задач по теме и подготовка к контрольным работам Проработка методических указаний к лабораторным работам по физике в процессе подготовки к их выполнению и защите.	10
6	2	РАЗДЕЛ 6 ВОЛНОВАЯ ОПТИКА	 Проработка лекционного материала, соответствующих разделов в учебниках и подготовка к тестам. Решение задач по теме и подготовка к контрольным работам Проработка методических указаний к лабораторным работам по физике в процессе подготовки к их выполнению и защите. 	17
7	2	РАЗДЕЛ 7 КВАНТОВАЯ ОПТИКА	- Проработка лекционного материала, соответствующих разделов в учебниках и подготовка к тестам. - Решение задач по теме и подготовка к	5

			контрольным работам Проработка методических указаний к лабораторным работам по физике в процессе подготовки к их выполнению и защите.	
8	2	РАЗДЕЛ 8 ТЕРМОДИНАМИКА И МОЛЕКУЛЯРНАЯ ФИЗИКА	 Проработка лекционного материала, соответствующих разделов в учебниках и подготовка к тестам. Решение задач по теме и подготовка к контрольным работам. Проработка методических указаний к лабораторным работам по физике в процессе подготовки к их выполнению и защите. 	17
9	3	РАЗДЕЛ 9 КВАНТОВАЯ ФИЗИКА. АТОМНАЯ И ЯДЕРНАЯ ФИЗИКА	 Проработка лекционного материала, соответствующих разделов в учебниках и подготовка к тестам. Решение задач по теме и подготовка к контрольным работам. Проработка методических указаний к лабораторным работам по физике в процессе подготовки к их выполнению и защите. 	41
		•	ВСЕГО:	139

7. ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ ЛИТЕРАТУРЫ, НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

7.1. Основная литература

				Используется при
№ п/п	Наименование	Автор (ы)	Год и место издания Место доступа	изучении разделов, номера
11/11			посто доступа	страниц

7.2. Дополнительная литература

					Используется при	
	$N_{\underline{0}}$	Наименование	Автор (ы)	Год и место издания	изучении	
п/п	Паименование	Автор (ы)	Место доступа	разделов, номера		
					страниц	

8. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ "ИНТЕРНЕТ", НЕОБХОДИМЫЕ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

http://www.fepo.ru/

http://www.edu.ru/

http://www.fgosvpo.ru/

http://www.i-exam.ru/

femida (МИИТ),

Учебно-методический комплекс кафедры «Физика» МИИТ

Электронный контент лектора

http://library.miit.ru/ - электронно-библиотечная система Научно-технической библиотеки МИИТ

http://elibrary.ru/ - научно-электронная библиотека.

scholar.google.ru

Поисковые системы: Yandex, Google, Mail.

9. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

- 1. Операционная среда Windows;
- 2. Приложение MicrosoftOffice;
- 3. Антивирусные программы.
- 4. Тестовые программы, в том числе АСТ, ФЭПО, кафедральные;
- 5. Иллюстративный материал по курсу общей физики;
- 6. Доступ к Интернет;
- 7. Возможность пользования внутренней сетью МИИТа;
- 8. Электронная библиотека кафедры;
- 9. Видеотека кафедры.

10. ОПИСАНИЕ МАТЕРИАЛЬНО ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Организация рабочего места студента в университете (температурный режим, средняя площадь, приходящаяся на человека в учебной аудитории, временной режим работы, освещённость рабочего места) регламентируются соответствующими САНПи Нами, соблюдение требований которых контролируется администрацией учебного заведения.

Кроме того, каждый семестр перед началом работы в учебных лабораториях проводится инструктаж студентов по технике безопасности: студенты не допускаются к занятиям, пока не ознакомятся с инструкцией и не поставят подпись в соответствующей ведомости. Для лекционных занятий: лекционный зал, аудиовизуальный комплекс.

Для семинаров: компьютерный класс (локальная сеть, состоящая из 30 рабочих станций, сервера, компьютера преподавателя), интерактивная доска и связь с аудиовизуальным комплексом, выход в Интернет.

Для проведения лабораторных работ: комплекс электроизмерительных физических приборов; лабораторные установки тематического назначения соответствующие лабораторному практикуму.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

Обучающимся необходимо помнить, что качество полученного образования в немалой степени зависит от активной роли самого обучающегося в учебном процессе. Обучающийся должен быть нацелен на максимальное усвоение подаваемого лектором

Ооучающиися должен оыть нацелен на максимальное усвоение подаваемого лектором материала, после лекции и во время специально организуемых индивидуальных встреч (консультаций) он может задать лектору интересующие его вопросы.

Лекционные занятия составляют основу теоретического обучения и должны давать систематизированные основы знаний по дисциплине, раскрывать состояние и перспективы развития соответствующей области науки, концентрировать внимание обучающихся на наиболее сложных и узловых вопросах, стимулировать их активную познавательную деятельность и способствовать формированию творческого мышления. Главная задача лекционного курса — сформировать у обучающихся системное представление об изучаемом предмете, обеспечить усвоение будущими специалистами основополагающего учебного материала, принципов и закономерностей развития соответствующей научно-практической области, а также методов применения полученных знаний, умений и навыков.

Основные функции лекций:

- ? познавательно-обучающая:
- ? развивающая;
- ? ориентирующе-направляющая;
- ? активизирующая;
- ? воспитательная;
- ? организующая;
- ? информационная.

Выполнение практических заданий и лабораторных работ служит важным связующим звеном между теоретическим освоением данной дисциплины и применением ее положений на практике. Они способствуют развитию самостоятельности обучающихся, более активному освоению учебного материала, являются важной предпосылкой формирования профессиональных качеств будущих специалистов.

Проведение практических занятий и лабораторных работ не сводится только к органическому дополнению лекционных курсов и самостоятельной работы обучающихся. Их вместе с тем следует рассматривать как важное средство проверки усвоения обучающимися тех или иных положений, даваемых на лекции, а также рекомендуемой для изучения литературы; как форма текущего контроля за отношением обучающихся к учебе, за уровнем их знаний, а, следовательно, и как один из важных каналов для своевременного подтягивания отстающих обучающихся.

Компетенции обучающегося, формируемые в результате освоения учебной дисциплины, рассмотрены через соответствующие знания, умения и владения. Для проверки уровня освоения дисциплины предлагаются вопросы к экзамену и тестовые материалы, где

каждый вариант содержит задания, разработанные в рамках основных тем учебной дисциплины и включающие терминологические задания.

Фонд оценочных средств является составной частью учебно-методического обеспечения процедуры оценки качества освоения образовательной программы и обеспечивает повышение качества образовательного процесса и входит, как приложение, в состав рабочей программы дисциплины.

Методические указания находятся в библиотеке МИИТа, в электронной форме на кафедре «Физика» (ауд. 14313, 14321, 14317).