МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности 10.05.01 Компьютерная безопасность, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Физика

Специальность: 10.05.01 Компьютерная безопасность

Специализация: Информационная безопасность объектов

информатизации на базе компьютерных

систем

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 1178210

Подписал: заведующий кафедрой Быков Никита Валерьевич

Дата: 09.06.2024

1. Общие сведения о дисциплине (модуле).

Основной целью изучения дисциплины (модуля) «Физика» является формирование у обучающегося компетенций для научно-исследовательской деятельности, для формирования которых студенты должны научиться собирать и изучать научно-техническую информацию, отечественный и зарубежный опыт по тематике исследования; анализировать научно-техническую информацию, отечественный и зарубежный опыт по тематике исследования; проводить эксперименты по заданной методике, обрабатывать и анализировать их результаты; проводить вычислительные эксперименты с использованием стандартных программных средств с целью получения математических моделей процессов и объектов автоматизации и управления; подготавливать данные и составлять обзоры, рефераты, отчеты, научные публикации и доклады на научных конференциях и семинарах, участвовать во внедрении результатов исследований и разработок.

В рабочей программе по дисциплине (модулю) «Физике» заложены основы формирования у будущих бакалавров и специалистов подхода к решению профессиональных задач, ориентированных на прикладной вид (виды) профессиональной деятельности как основной, что реализуется на основе современных знаний фундаментальных законов физики, а также естественнонаучных представлений о материи, движении и фундаментальных взаимодействиях.

Изучение курса общей физики в техническом университете обусловлено возрастающей ролью фундаментальных наук в подготовке бакалавра и специалиста. Это связано с тем, что внедрение современных высоких технологий в практическую инженерную деятельность предполагает основательное знакомство работников с физическими основами протекания соответствующих процессов, с классическими и с новейшими методами физических исследований. Данный курс даёт возможность будущим бакалаврам и специалистам получить требуемые знания в области физики, а также приобрести навыки их дальнейшего пополнения, используя в этих целях различные (в том числе – электронные) источники информации. Более того, программа дисциплины (модуля) «Физика» сформирована таким образом, чтобы не только дать обучающимся представление об основных разделах физики, познакомить их с наиболее важными экспериментальными и теоретическими результатами, но и провести демаркацию между научным и антинаучным подходом в изучении окружающего мира. Дисциплина (модуль) учит обучающихся строить модели происходящих явлений и процессов, прививая понимание причинно-следственной связи между ними,

формируя у будущих бакалавров и специалистов подлинно научное мировоззрение.

Основные задачи:

- изучение физических законов окружающего мира в их единстве и взаимосвязи;
- овладение фундаментальными принципами и методами решения научно-технических задач;
- формирование навыков по применению положений фундаментальной физики к грамотному научному анализу ситуаций, с которыми инженеру приходится сталкиваться при создании новой техники и новых технологий;
- освоение основных физических теорий, позволяющих описать явления в природе, и пределов применимости этих теорий для решения современных и перспективных технологических задач;
 - формирование у студентов основ естественнонаучной картины мира;
- ознакомление студентов с историей и логикой развития физики и основных её открытий;
- создание универсальной базы для изучения общепрофессиональных и специальных дисциплин;
- заложить фундамент последующего обучения в магистратуре, аспирантуре;
- вооружить специалистов необходимыми знаниями для решения научно-технических задач в теоретических и прикладных аспектах.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-4** Способен анализировать физическую сущность явлений и процессов, лежащих в основе функционирования микроэлектронной техники, применять основные физические законы и модели для решения задач профессиональной деятельности;
- **УК-1** Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

физическую сущность явлений и процессов; основные физические законы и модели для решения задач в профессиональной деятельности, лежащих в основе функционирования микроэлектронной техники.

Уметь:

анализировать поставленные инженерные задачи с использованием методов естественных наук; применять методы теоретического и экспериментального исследования объектов, процессов и явлений; осуществлять критический анализ проблемных ситуаций на основе системного подхода; вырабатывать стратегию действий.

Владеть:

навыками измерений количественных характеристик исследуемых объектов и явлений; навыками использования математического анализа и моделирования при алгоритмизации инженерных (предметно-профильных) задач и их дальнейшего решения.

Знать:

основы критического анализа проблемных ситуаций на основе системного подхода.

Уметь:

применять системный подход для критического анализа проблемных ситуаций.

Владеть:

навыками применения системного подхода для выработки стратегии действий.

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 9 з.е. (324 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

	Количество часов			
Тип учебных занятий	Всего	Семестр		
		№ 1	№ 2	№3
Контактная работа при проведении учебных занятий (всего):	184	56	56	72

В том числе:				
Занятия лекционного типа	96	32	32	32
Занятия семинарского типа	88	24	24	40

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 140 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№	Томотнико покунночну ву рондтий / кроткое сопорукачно
Π/Π	Тематика лекционных занятий / краткое содержание
1	РАЗДЕЛ 1. МЕХАНИКА
	Тема 1
	Рассматриваемые вопросы:
	- предмет и задачи физики;
	- кинематика: основные понятия;
	- движение по прямой: скорость, ускорение.
	Тема 2
	Рассматриваемые вопросы:
	- криволинейное движение;
	- нормальное и тангенциальное ускорение;
	- кинематика вращательного движения: угловая скорость и угловое ускорение, их связь с линейной
	скоростью и ускорением.
	Тема 3
	Рассматриваемые вопросы:
	- инерциальные системы отсчета и первый закон Ньютона;
	- второй закон Ньютона;
	- масса, импульс, сила;
	- центр масс системы материальных точек;
	- уравнение движения материальной точки;
	- третий закон Ньютона;
	- закон сохранения импульса;

<u>o</u>	Toyonwa your way a condition / to a condition
п	Тематика лекционных занятий / краткое содержание
	- закон Всемирного тяготения;
	- первая, вторая и третья космические скорости;
	- силы сопротивления.
	Тема 4
	Рассматриваемые вопросы:
	- динамика вращательного движения;
	- момент силы;
	- момент инерции;
	- момент импульса;
	- теорема Штейнера;
	- основной закон динамики вращательного движения в случае системы точек и в случае твёрдого
	тела;
	- закон сохранения момента импульса;
	- гироскопы.
	Тема 5
	Рассматриваемые вопросы:
	- работа переменной силы;
	- мощность;
	- кинетическая энергия тела при поступательном движении;
	- кинетическая энергия тела при вращательном движении;
	- поле сил;
	- консервативные и неконсервативные силы, примеры;
	- потенциальная энергия;
	- потенциальная энергия в поле сил тяжести;
	- потенциальная энергия упруго деформированной пружины;
	- закон сохранения полной механической энергии в поле потенциальных сил.
	Тема 6
	Рассматриваемые вопросы:
	- периодические процессы;
	- гармонические процессы;
	- маятники; - уравнение свободных незатухающих механический колебаний и его решение;
	- уравнение свооодных незатухающих механический колеоаний и его решение, - амплитуда, частота и фаза колебаний;
	- амплитуда, частота и фаза колеоании, - энергия колебаний;
	- энергия колеоании; - уравнение свободных затухающих механический колебаний и его решение;
	- уравнение свооодных затухающих механический колеоаний и его решение, - примеры колебательных движений различной физической природы.
	Тема 7
	Рассматриваемые вопросы:
	- уравнение вынужденных механический колебаний и его решение;
	- резонанс; - сложение колебаний (биения, фигуры Лиссажу);
	- сложение колеоании (оиения, фигуры лиссажу); - анализ и синтез колебаний, понятие о спектре колебаний;
	- анализ и синтез колеоании, понятие о спектре колеоании; - связанные колебания.
	Тема 8
	Рассматриваемые вопросы:
	- упругие напряжения и деформации в твердом теле;
	- закон Гука;

No	
п/п	Тематика лекционных занятий / краткое содержание
	- модуль Юнга;
	- коэффициент Пуассона;
	- общие свойства жидкостей и газов;
	- стационарное течение идеальной жидкости;
	- уравнение непрерывности;
	- уравнение Бернулли.
	Тема 9
	Рассматриваемые вопросы:
	- волновое движение;
	- плоская гармоническая волна;
	- длина волны, волновое число, фазовая скорость;
	- уравнение волны;
	- одномерное волновое уравнение;
	- упругие волны в газах жидкостях и твердых телах;
	- элементы акустики;
	- эффект Доплера.
	Тема 10
	Рассматриваемые вопросы:
	- принцип относительности и преобразования Галилея;
	- экспериментальные обоснования специальной теории относительности (СТО);
	- постулаты СТО;
	- относительность одновременности и преобразования Лоренца;
	- лоренцовское сокращение длины и замедление времени в движущихся системах отсчета;
	- релятивистский импульс;
	- взаимосвязь массы и энергии.
2	РАЗДЕЛ 2. ТЕРМОДИНАМИКА И МОЛЕКУЛЯРНАЯ ФИЗИКА Тема 11
	Рассматриваемые вопросы:
	- эмпирическая температурная шкала;
	- термодинамическое равновесие и температура;
	- квазистатические процессы;
	- уравнение состояния в термодинамике;
	- обратимые и необратимые процессы;
	- внутренняя энергия газа и ее изменение;
	- первое начало термодинамики;
	- теорема Майера;
	- адиабатный процесс;
	- политропные процессы.
	Тема 12
	Рассматриваемые вопросы: - энтропия;
	- второе начало термодинамики; - статистическое толкование энтропии;
	- статистическое толкование энтропии, -преобразование теплоты в механическую работу;
	- тепловые машины; - цикл Карно и его коэффициент полезного действия.
	Тема 13
	Рассматриваемые вопросы:

No	
п/п	Тематика лекционных занятий / краткое содержание
	- молекулярная физика;
	- идеальный газ;
	- уравнение состояния идеального газа;
	- изохорный, изобарный, изотермический процессы;
	- основное уравнение МКТ;
	- молекулярно-кинетическая теория теплоемкости;
	- связь теплоемкости с числом степеней свободы молекул газа.
	Тема 14
	Рассматриваемые вопросы:
	- распределение Максвелла молекул идеального газа по скоростям;
	- распределение макевелла молекул идеального газа по скоростям, - опыт Штерна;
	- барометрическая формула;
	- распределение Больцмана;
	- средняя длина свободного пробега молекул;
	- явления переноса (теплопроводность, диффузия, внутреннее трение).
	Тема 15
	Рассматриваемые вопросы:
	- реальный газ;
	- уравнение Ван-дер-Ваальса;
	- фазовые переходы;
	- теория жидкости.
	Тема 16
	Рассматриваемые вопросы:
	- структура твердых тел;
	- аморфные и кристаллические твердые тела;
	- кристаллическая решетка;
2	- дефекты кристаллической решетки.
3	РАЗДЕЛ 3. ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ
	Tema 17
	Рассматриваемые вопросы:
	- закон Кулона;
	- напряженность электростатического поля;
	- силовые линии;
	- принцип суперпозиции;
	- теорема Гаусса в интегральной форме и ее применение для расчета напряженностей
	электрических полей;
	- циркуляция напряжённости электрического поля;
	- потенциал электрического поля;
	- эквипотенциальные поверхности;
	- связь напряжённости и потенциала.
	Тема 18
	Рассматриваемые вопросы:
	- электрическое поле диполя;
	- диполь во внешнем электрическом поле;
	- поляризация диэлектриков;
	- ориентационный и деформационный механизмы поляризации;
	- вектор электрического смещения;
	- теорема Гаусса для электростатического поля в диэлектрике;

No	Т
Π/Π	Тематика лекционных занятий / краткое содержание
	- вектор электрического смещения (индукция электрического поля);
	- диэлектрическая проницаемость вещества;
	- электрическое поле в однородном диэлектрике;
	- электреты и сегнетоэлектрики;
	- пьезоэффект.
	Тема 19
	Рассматриваемые вопросы:
	- проводники в электрическом поле;
	- электростатическая защита;
	- электроёмкость проводников и конденсаторов;
	- энергия заряженного проводника, конденсатора.
	Тема 20
	Рассматриваемые вопросы:
	- сила тока, плотность тока;
	- классическая теория электропроводности;
	- уравнение непрерывности для плотности тока;
	- закон Ома для однородного участка цепи;
	- электрическое сопротивление;
	- правила соединения проводников;
	- закон Ома в дифференциальной форме;
	- закон Джоуля-Ленца;
	- закон Видемана-Франца;
	- электродвижущая сила источника тока;
	- закон Ома для неоднородного участка цепи.
	Тема 21
	Рассматриваемые вопросы:
	- правила Кирхгофа;
	- электрический ток в вакууме, газе, жидкости и твердом теле.
	Тема 22
	Рассматриваемые вопросы:
	- магнитное поле постоянных магнитов и проводников с током;
	- закон Ампера;
	- вектор магнитной индукции;
	- магнитное взаимодействие постоянных токов;
	- сила Лоренца;
	- эффект Холла.
	Тема 23
	Рассматриваемые вопросы:
	- циклотрон;
	- закон Био-Савара-Лапласа;
	- теорема о циркуляции вектора магнитной индукции;
	- примеры применения теоремы;
	- вихревой характер магнитных полей.
	Тема 24
	Рассматриваемые вопросы:
	- магнитный поток;

No	
п/п	Тематика лекционных занятий / краткое содержание
	- теорема Гаусса для магнитного поля;
	работа по перемещению проводника с током в магнитном поле;
	- рамка с током в однородном и неоднородном магнитном полях;
	- магнитное поле и магнитный дипольный момент кругового тока;
	- намагничение магнетиков;
	- напряженность магнитного поля;
	- магнитная проницаемость;
	- классификация магнетиков;
	- ферромагнетизм.
	Тема 25
	- явление электромагнитной индукции;
	- правило Ленца;
	- закон Фарадея электромагнитной индукции;
	- вихревые токи (токи Фуко);
	- самоиндукция;
	- индуктивность соленоида;
	- явление взаимной индукции;
	- трансформатор;
	- энергия магнитного поля;
	- колебания в электромагнитном контуре;
	- переменный ток.
	Тема 26
	Рассматриваемые вопросы:
	- система уравнений Максвелла в интегральной форме и физический смысл входящих в нее
	уравнений;
	- электромагнитное поле.
4	РАЗДЕЛ 4. ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ И ОПТИКА
	Тема 27
	Рассматриваемые вопросы:
	- следствия из уравнений Максвелла;
	- электромагнитные волны;
	- опыты Герца;
	- шкала электромагнитных волн;
	- скорость, энергия, интенсивность электромагнитной волны;
	- поток плотности энергии волны. Вектор Умова Пойнтинга.
	Тема 28
	Рассматриваемые вопросы:
	- интерференция волн;
	- стоячие волны;
	- интерференция света;
	- опыт Юнга;
	- интерферометр Майкельсона;
	- интерференция в тонких пленках и в клине;
	- применение интерференции.
	Тема 29
	Рассматриваемые вопросы:
	- принцип Гюйгенса-Френеля;
	- метод зон Френеля;

$N_{\underline{0}}$	Tomorrano horantonian in portamenta / resource contemporario
Π/Π	Тематика лекционных занятий / краткое содержание
	- дифракция Френеля на простейших преградах;
	- дифракция Фраунгофера на одной и двух щелях.
	Тема 30
	Рассматриваемые вопросы:
	- дифракционная решетка;
	- голография;
	- дифракция рентгеновских лучей на кристаллической решётке;
	- условие Вульфа-Брэгга.
	T 21
	Tema 31
	Рассматриваемые вопросы: - форма и степень поляризации монохроматических волн;
	- форма и степень поляризации монохроматических волн, - получение и анализ линейно-поляризованного света;
	- законы Брюстера, Малюса;
	- линейное двулучепреломление;
	- прохождение света через линейные фазовые пластинки;
	- искусственная оптическая анизотропия;
	- фотоупругость;
	- вращение плоскости поляризации;
	- электрооптические и магнитооптические эффекты;
	- жидкие кристаллы.
	Тема 32
	Рассматриваемые вопросы:
	- дисперсия света;
	- фазовая и групповая скорости волн;
	- поглощение и рассеяние света.
5	РАЗДЕЛ 5. КВАНТОВАЯ ФИЗИКА
	Тема 33
	Рассматриваемые вопросы:
	- тепловое излучение и люминесценция;
	- спектральные характеристики теплового излучения;
	- законы Кирхгофа, Стефана-Больцмана и законы смещения Вина;
	- абсолютно черное тело;
	- формула Релея-Джинса и «ультрафиолетовая катастрофа».
	Тема 34
	Рассматриваемые вопросы:
	- гипотеза квантов;
	- формула Планка;
	- формула ггланка, - квантовое объяснение законов теплового излучения.
	REMITTED OF COMMINING SURCINGS THISTODOLOUSING TOURING
	Тема 35
	Тема 35
	Тема 35 Рассматриваемые вопросы:
	Тема 35 Рассматриваемые вопросы: - внешний фотоэффект;
	Тема 35 Рассматриваемые вопросы: - внешний фотоэффект; - уравнение Эйнштейна; - импульс фотона.
	Тема 35 Рассматриваемые вопросы: - внешний фотоэффект; - уравнение Эйнштейна;

	Тематика лекционных занятий / краткое содержание
I	1 71
	- давление света.
	Тема 37
	Рассматриваемые вопросы:
	- корпускулярно-волновой дуализм света;
	- эмпирические закономерности в атомных спектрах;
	- формула Бальмера;
	- модель атома Томсона;
	- опыты Резерфорда по рассеянию альфа-частиц;
	- ядерная модель атома;
	- теория атома водорода по Бору.
	Тема 38
	Рассматриваемые вопросы:
	- гипотеза де Бройля;
	- опыты Дэвиссона и Джермера;
	- дифракция микрочастиц;
	- принцип неопределенности Гейзенберга.
	Тема 39
	Рассматриваемые вопросы:
	- волновая функция, ее статистический смысл и условия, которым она должна удовлетворять;
	- уравнение Шредингера.
	Тема 40
	Рассматриваемые вопросы:
	- квантовая частица в одномерной потенциальной яме;
	- одномерный потенциальный порог и барьер;
	- туннельный эффект;
	- квантовый гармонический осциллятор.
	Тема 41
	Рассматриваемые вопросы:
	- стационарное уравнение Шредингера для атома водорода;
	- волновые функции и квантовые числа;
	- правила отбора для квантовых переходов;
	- опыт Штерна и Герлаха;
	- эффект Зеемана;
	- принцип Паули;
	- периодическая таблица элементов.
	Тема 42
	Рассматриваемые вопросы:
	- элементы квантовой статистики: фермионы, бозоны;
	- зонная концепция твёрдых тел;
	- металлы, диэлектрики, полупроводники (собственные и примесные).
	Тема 43
	Рассматриваемые вопросы:
	- электрические свойства твёрдых тел;
	- зависимость электропроводности от температуры;
	- сверхпроводимость.

№ п/п	Тематика лекционных занятий / краткое содержание
	Тема 44
	Рассматриваемые вопросы:
	- фотопроводимость;
	- люминесценция твёрдых тел;
	- спонтанное и индуцированное излучение;
	- особенности лазерного излучения;
	- основные типы лазеров и их применение.
6	РАЗДЕЛ 6. ФИЗИКА АТОМНОГО ЯДРА. ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ
	Тема 45
	Рассматриваемые вопросы:
	- состав атомного ядра;
	- характеристики ядра: заряд, масса, энергия связи нуклонов;
	- изотопы;
	- радиоактивность;
	- виды и законы радиоактивного излучения;
	- ядерные реакции;
	- законы сохранения в ядерных реакциях;
	- деление ядер;
	- синтез ядер.
	Тема 46
	Рассматриваемые вопросы:
	- детектирование ядерных излучений;
	- основы дозиметрии.
	Тема 47
	Рассматриваемые вопросы:
	- основные классы элементарных частиц;
	- частицы и античастицы;
	- кварки, лептоны, частицы – переносчики взаимодействий.
ſ	Тема 48
	Рассматриваемые вопросы:
	- виды фундаментальных взаимодействий;
	- эволюция Вселенной и звёзд.

4.2. Занятия семинарского типа.

Лабораторные работы

№ п/п	Наименование лабораторных работ / краткое содержание
1	РАЗДЕЛ 1. Механика
	В результате работы студент будет ознакомлен с закономерностями равноускоренного движения.
	«Изучение равноускоренного движения на машине Атвуда»
	В результате работы студент будет ознакомлен с закономерностями равноускоренного движения.
	«Изучение свободных колебаний физического маятника»
2	РАЗДЕЛ 2. Термодинамика и молекулярная физика
	В результате работы студент будет ознакомлен с закономерностями адиабатного процесса.

$N_{\underline{0}}$	Наименование лабораторных работ / краткое содержание	
Π/Π	паименование лаоораторных раоот / краткое содержание	
	«Определение коэффициента вязкости жидкости»	
	В результате работы студент будет ознакомлен с закономерностями адиабатного процесса.	
	«Определение отношения теплоёмкостей газа методом Клемана-Дезорма»	
3	РАЗДЕЛ 3. Электричество и магнетизм	
	В результате работы студент будет ознакомлен с закономерностями электростатического и	
	магитного поля.	
	«Изучение топографии электростатического поля»	
	В результате работы студент будет ознакомлен с закономерностями электростатического и	
	магитного поля.	
	«Изучение магнитного поля соленоида с помощью датчика Холла»	
4	РАЗДЕЛ 4. Электромагнитные волны и оптика	
	В результате работы студент будет ознакомлен с закономерностями затухающих колебаний в	
	колебательном контуре.	
	«Изучение явления интерференции света с помощью бипризмы Френеля»	
	В результате работы студент будет ознакомлен с закономерностями затухающих колебаний в	
	колебательном контуре.	
	«Изучение дифркации Фраунгофера на щели»	
5	РАЗДЕЛ 5. Квантовая физика	
	В результате работы студент будет ознакомлен с закономерностями внешнего фотоэффекта.	
	«Изучение спектра атома водорода»	
	В результате работы студент будет ознакомлен с закономерностями внешнего фотоэффекта.	
	«Изучение внешнего фотоэффекта и измерение постоянной Планка	
	В результате работы студент будет ознакомлен с закономерностями внешнего фотоэффекта.	
	«Изучение температурной зависимости электрического сопротивления металлов и	
	полупроводников»	
6	РАЗДЕЛ 6. Физика атомного ядра. Элементарные частицы	
	В результате работы студент будет ознакомлен с закономерностями строения атома.	
	«Опыт Франка-Герца»	

Практические занятия

No	Томотично иномитичности роздатуй/инотучес со монитому	
п/п	Тематика практических занятий/краткое содержание	
1	РАЗДЕЛ 1. Механика	
	В результате выполнения практического задания студент будет ознакомлен с вопросами:	
	Кинематика поступательного и вращательного движений.	
	Законы Ньютона.	
	В результате выполнения практического задания студент будет ознакомлен с вопросами:	
	Динамика вращательного движения. Момент силы; момент инерции; момент импульса. Теорема	
	Штейнера. Основной закон динамики вращательного движения в случае системы точек и в случае	
	твёрдого тела. Закон сохранения момента импульса.	
	В результате выполнения практического задания студент будет ознакомлен с вопросами:	
	Работа переменной силы. Мощность. Кинетическая энергия тела при поступательном движении.	
	Кинетическая энергия тела при вращательном движении. Потенциальная энергия. Потенциальная	
	энергия в поле сил тяжести, потенциальная энергия упруго деформированной пружины. Закон	
	сохранения полной механической энергии в поле потенциальных сил.	
	В результате выполнения практического задания студент будет ознакомлен с вопросами:	

No	W/	
Π/Π	Тематика практических занятий/краткое содержание	
	Гармонические колебания. Маятники. Уравнение колебаний и его решение. Амплитуда, частота и фаза колебания. Энергия колебаний. Свободные колебания. Энергия колебаний. Вынужденные колебания. Резонанс.	
	В результате выполнения практического задания студент будет ознакомлен с вопросами: Принцип относительности и преобразования Галилея. Постулаты СТО. Относительность	
	одновременности и преобразования Лоренца. Сокращение длины и замедление времени в движущихся системах отсчета. Релятивистский импульс. Взаимосвязь массы и энергии.	
2	РАЗДЕЛ 2. Термодинамика и молекулярная физика	
2	В результате выполнения практического задания студент будет ознакомлен с вопросами: Уравнение состояния в термодинамике. Обратимые и необратимые процессы. Внутренняя энергия газа и ее изменение. Первое начало термодинамики. Уравнение Майера. Адиабатный процесс.	
	Политропные процессы. Второе начало термодинамики. Энтропия. Статистическое толкование энтропии. Тепловые	
	машины. Цикл Карно и его коэффициент полезного действия.	
	В результате выполнения практического задания студент будет ознакомлен с вопросами: Идеальный газ. Уравнение состояния идеального газа. Изохорный, изобарный, изотермический процессы. Основное уравнение МКТ.	
	В результате выполнения практического задания студент будет ознакомлен с вопросами: Распределение Максвелла молекул идеального газа по скоростям. Опыт Штерна. Барометрическая формула. Распределение Больцмана.	
3	РАЗДЕЛ 3. Электричество и магнетизм	
J	В результате выполнения практического задания студент будет ознакомлен с вопросами:	
	Закон Кулона. Напряженность электростатического поля. Силовые линии. Принцип суперпозиции.	
	Теорема Гаусса в интегральной форме и ее применение для расчета электрических полей.	
	Электрическое поле диполя.	
	В результате выполнения практического задания студент будет ознакомлен с вопросами:	
	Электроёмкость проводников и конденсаторов. Энергия заряженного проводника, конденсатора. Сила тока, плотность тока. Закон Ома для однородного участка цепи. Электрическое	
	сопротивление. Соединение проводников.	
	Закон Ома в дифференциальной форме. Закон Джоуля-Ленца.	
	В результате выполнения практического задания студент будет ознакомлен с вопросами:	
	Закон Ампера. Вектор магнитной индукции. Магнитное взаимодействие постоянных токов. Сила Лоренца. Эффект Холла.	
	Закон Био-Савара-Лапласа.	
	В результате выполнения практического задания студент будет ознакомлен с вопросами:	
	Явление электромагнитной индукции. Правило Ленца. Закон Фарадея электромагнитной индукции.	
	Самоиндукция. Индуктивность соленоида. Трансформатор. Энергия магнитного поля.	
4	РАЗДЕЛ 4. Электромагнитные волны и оптика	
•	В результате выполнения практического задания студент будет ознакомлен с вопросами:	
	Электромагнитные волны. Скорость, энергия, интенсивность электромагнитной волны. Поток	
	плотности энергии волны.	
	Интерференция волн.	
	В результате выполнения практического задания студент будет ознакомлен с вопросами:	
	Принцип Гюйгенса-Френеля. Метод зон Френеля. Дифракция Френеля на простейших преградах.	
	Дифракция Фраунгофера на одной и двух щелях.	
	В результате выполнения практического задания студент будет ознакомлен с вопросами:	
	Дифракционная решетка.	
	Законы Брюстера, Малюса.	
	В результате выполнения практического задания студент будет ознакомлен с вопросами:	
	Дисперсия света. Фазовая и групповая скорости волн. Поглощение и рассеяние света.	

No	Тематика практических занятий/краткое содержание	
п/п	томини прини томин ошини принио обдоржини	
5	РАЗДЕЛ 5. Квантовая физика	
	В результате выполнения практического задания студент будет ознакомлен с вопросами:	
	Спектральные характеристики теплового излучения. Законы Кирхгофа, Стефана-Больцмана и закон смещения Вина. Абсолютно черное тело.	
	В результате выполнения практического задания студент будет ознакомлен с вопросами:	
	Внешний фотоэффект, уравнение Эйнштейна. Импульс фотона.	
	В результате выполнения практического задания студент будет ознакомлен с вопросами:	
	Квантовая частица в одномерной потенциальной яме. Одномерный потенциальный порог и барьер.	
	Туннельный эффект. Квантовый гармонический осциллятор.	
	В результате выполнения практического задания студент будет ознакомлен с вопросами:	
	Стационарное уравнение Шредингера для атома водорода. Волновые функции и квантовые числа.	
	Правила отбора для квантовых переходов.	
6	РАЗДЕЛ 6. Физика атомного ядра. Элементарные частицы	
	В результате выполнения практического задания студент будет ознакомлен с вопросами:	
	Состав атомного ядра. Характеристики ядра: заряд, масса, энергия связи нуклонов. Изотопы.	
	Радиоактивность. Виды и законы радиоактивного излучения.	
	В результате выполнения практического задания студент будет ознакомлен с вопросами:	
	Ядерные реакции. Законы сохранения в ядерных реакциях. Деление ядер. Синтез ядер.	
	В результате выполнения практического задания студент будет ознакомлен с вопросами:	
	Детектирование ядерных излучений. Понятие о дозиметрии и защите.	
	В результате выполнения практического задания студент будет ознакомлен с вопросами:	
	Основные классы элементарных частиц. Частицы и античастицы. Кварки, лептоны, частицы –	
	переносчики взаимодействий.	

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы	
1	Подготовка к лабораторным работам	
2	Подготовка к практическим занятиям	
3	Работа с лекционным материалом	
4	Работа с литературой	
5	Подготовка к промежуточной аттестации.	
6	Подготовка к текущему контролю.	

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№	Библиографическое	Место доступа
Π/Π	описание	
1	Савельев, И. В. Курс	https://e.lanbook.com/book/142380?category=919 (дата
	общей физики:	обращения: 25.01.2024). Текст: электронный.
	учебное пособие: в 3	
	томах / И. В. Савельев.	
	— 19-е изд., стер. —	

	СПС	
	Санкт-Петербург:	
	Лань, 2019 — Том 1:	
	Механика.	
	Молекулярная физика	
	— 2020. — 436 c. —	
	ISBN 978-5-8114-5539-	
	3.	
2	Савельев, И. В.	https://e.lanbook.com/book/183764?category=919 (дата
	Основы теоретической	обращения: 25.01.2024). Текст: электронный.
	физики: учебник для	
	вузов / И. В. Савельев.	
	— 6-е изд., стер. —	
	Санкт-Петербург:	
	Лань, [б. г.]. — Том 1 :	
	Механика.	
	Электродинамика —	
	2022. — 496 c. — ISBN	
	978-5-8114-9042-4 (том	
	1), 978-5-8114-0618-0	
	(общий).	
3	Савельев, И. В. Курс	https://e.lanbook.com/book/184164 (дата обращения:
	физики. В 3 т. Том 2.	25.01.2024). Текст: электронный.
	Электричество.	
	Колебания и волны.	
	Волновая оптика:	
	учебное пособие для	
	вузов / И. В. Савельев.	
	7-е изд., стер	
	Санкт-Петербург:	
	Лань, 2022. — 468 с.	
	— ISBN 978-5-8114-	
	9096-7.	
4	Савельев, И. В. Курс	https://e.lanbook.com/book/185339 (дата обращения:
	общей физики. В 3 т.	25.01.2024). Текст: электронный.
	Том 2. Электричество	
	и магнетизм. Волны.	
	Оптика: учебное	
	пособие для вузов / И.	
	В. Савельев. — 16-е	
	изд., стер. — Санкт-	
	Петербург : Лань,	
	2022. — 500 c. — ISBN	
	978-5-8114-8926-8.	
5	Физика: конспект	http://library.miit.ru/bookscatalog/upos/03-19701.pdf (дата
	лекций по общей	обращения: 25.01.2024). Текст: электронный.
	лекции по оощеи	1 ,

	физике для студ. спец. ИУИТ, ИСУТЭ, ИЭФ, ИТТОП, ИКБ и вечернего факультета. Ч.1 / С.М. Кокин; МИИТ. Каф. Физика- 2.М.: МИИТ, 2010 244 с.: ил Библиогр.: с. 3 158.44 р.	
6	Физика: учеб. пособие для студ. спец. и напр. ИУИТ, ИТТСУ, ИПСС, ИЭФ, вечернего факультета. Ч.2. Конспект лекций / С. М. Кокин, В. А. Никитенко; МИИТ. Каф. Физика.М.: МИИТ, 2013 178 с.: а-ил Библиогр.: с. 173 63.96 р.	http://library.miit.ru/bookscatalog/upos/14-47.pdf (дата обращения: 25.01.2024). Текст: электронный.
7	Физика: конспект лекций для студ. спец. и напр. ИУИТ, ИТТСУ, ИПСС, ИЭФ, Вечернего ф-та. Ч.3 / С. М. Кокин, В. А. Никитенко; МИИТ. Каф. Физика.М.: РУТ(МИИТ), 2017 256 с.: а-ил Библиогр.: с. 255 112.33 р.	http://library.miit.ru/bookscatalog/metod/DC-234.pdf (дата обращения: 25.01.2024). Текст: электронный.
8	Трофимова, Т. И. Руководство к решению задач по физике: учебное пособие для вузов / Т. И. Трофимова. — 3-е изд., испр. и доп. — Москва: Издательство Юрайт, 2023. — 265 с. — (Высшее образование). — ISBN 978-5-9916-3429-8.	https://urait.ru/viewer/rukovodstvo-k-resheniyu-zadach-po-fizike-510507#page/1 (дата обращения: 25.01.2024). Текст: электронный.

9	Физика. Русско-	http://library.miit.ru/bookscatalog/upos/DC-1604.pdf (дата
	китайский словарь.	обращения: 25.01.2024). Текст: электронный.
	Физические термины:	
	для студ. спец. ИУЦТ,	
	ИТТСУ, ИПСС / Т. С.	
	Кули-Заде, Э. Н.	
	Маммадли, С. М.	
	Кокин; МИИТ. Каф.	
	Физика М.: РУТ	
	(МИИТ), 2022 46 с	
	Б. ц.	
10	Физика: колебания,	http://library.miit.ru/bookscatalog/upos/DC-1593.pdf (дата
10	волны, оптика,	обращения: 25.01.2024). Текст: электронный.
	квантовая механика,	
	ядерная физика:	
	конспект лекций для	
	студ. спец. ИУЦТ,	
	ИТТСУ, ИПСС / С. М.	
	Кокин, В. А.	
	Никитенко; МИИТ.	
	Каф. Физика М.:	
	РУТ(МИИТ), 2022	
11	303 с Б. ц.	1.44 × //1.15 × × × × × × //1.4 × × //1.4 × × //1.4 × × //1.5 × × × × × × × × × × × × × × × × × × ×
11	Физика. Сборник задач	http://library.miit.ru/bookscatalog/metod/DC-241.pdf (дата обращения: 25.01.2024). Текст: электронный.
	Оптика. Элементы	ооращения. 23.01.2024). Текст. электронный.
	атомной физики и	
	квантовой механики:	
	учебно-метод. пособие	
	к решению задач по	
	дисц. Физика для студ.	
	всех спец. ИУИТ,	
	ИТТСУ, ИПСС / Т. С.	
	Кули-Заде, С. М.	
	Кокин; РУТ (МИИТ).	
	Каф. Физика М.:	
	РУТ(МИИТ), 2017	
10	90 c 73.60 p.	1.44//1/1
12	Сборник задач по	http://library.miit.ru/bookscatalog/2024/Kokin_Sbornik_zadach.pdf (дата обращения: 25.01.2024). Текст: электронный.
	дисциплине "Физика":	(дата воращения. 25.01.2027). Текст. электронный.
	учеб. пособие для	
	студентов ИУИТ и	
	ИСУТЭ / Т.В.	
	Захарова, Л.М.	
	Касименко, С.М.	
	Кокин; Ред. С.М.	

	Кокин ; МИИТ. Каф.	
	"Физика-2" M. :	
	МИИТ, 2006 144 с.	
13	Прошкин, С. С.	https://urait.ru/book/mehanika-sbornik-zadach-539564 (дата
13	Механика. Сборник	обращения: 25.01.2024). Текст: электронный.
	задач: учебное	
	пособие для вузов / С.	
	<u> </u>	
	С. Прошкин, В. А.	
	Самолетов, Н. В.	
	Нименский. — 2-е изд.	
	— Москва :	
	Издательство Юрайт,	
	2024. — 293 c. —	
	(Высшее образование).	
	— ISBN 978-5-534-	
	04916-9.	
14	Никеров, В. А. Физика	https://urait.ru/bcode/510319 (дата обращения: 25.01.2024).
	: учебник и практикум	Текст: электронный.
	для вузов / В. А.	
	Никеров. — 2-е изд.,	
	перераб. и доп. —	
	Москва: Издательство	
	Юрайт, 2024. — 558 с.	
	— (Высшее	
	образование). — ISBN	
	978-5-534-15950-9.	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Научно-техническая библиотека РУТ (МИИТ) (http://library.miit.ru).

Электронно-библиотечная система ЛАНЬ (https://e.lanbook.com/).

Образовательная платформа Юрайт (https://urait.ru/).

Информационный портал Научная электронная библиотека eLIBRARY.RU (www.elibrary.ru);

Единая коллекция цифровых образовательных ресурсов (http://window.edu.ru).

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Интернет-браузер (Yandex и др.)

Microsoft Office.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Для проведения аудиторных занятий по дисциплине (модулю) «Физика» используются аудитории, оснащенные мультимедийным оборудованием: проектор, экран, персональный компьютер/ноутбук.

Лабораторные работы по дисциплине (модулю) «Физика» проводятся в специально оборудованных лабораториях с применением необходимых средств обучения: лабораторного оборудования, образцов для исследований, методических пособий, компьютерных средств обработки результатов измерений.

9. Форма промежуточной аттестации:

Зачет в 1 семестре.

Экзамен во 2, 3 семестрах.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент, к.н. кафедры

«Физика» С.Г. Стоюхин

Согласовано:

Заведующий кафедрой УиЗИ Л.А. Баранов

Заведующий кафедрой Физика Н.В. Быков

Председатель учебно-методической

комиссии С.В. Володин