МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 02.03.02 Фундаментальная информатика и информационные технологии, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Физические принципы квантовой теории информации

Направление подготовки: 02.03.02 Фундаментальная информатика и

информационные технологии

Направленность (профиль): Квантовые вычислительные системы и сети

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 1178210

Подписал: заведующий кафедрой Быков Никита Валерьевич

Дата: 15.05.2025

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины (модуля) «Физические принципы квантовой теории информации» являются:

- получение знаний об основных физических принципах квантовой передачи данных;
- формирование компетенций в области физического описания элементов квантовых вычислительных систем и сетей.

Задачами дисциплины (модуля) «Физические принципы квантовой теории информации» являются:

- изучение классической и квантовой теории информации;
- уяснение основных принципов представления информации в квантовых информационных системах;
 - овладение основными приемами и операциями над кубитами;
 - изучение основных способов реализации кубитов;
 - изучение особенностей квантовой передачи информации.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-1** Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности;
- **ПК-2** Способность к поиску, критическому анализу, обобщению и систематизации научной информации в области физики квантовых вычислений.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- основные положения квантовой механики, квантовой теории информации;
 - различие между квантовыми и классическими вычислениями;
 - основные модели квантовых вычислений.

Уметь:

- анализировать альтернативные варианты решения задач в области физики квантовых вычислений;
 - осуществлять поиск, критический анализ;

- обобщать и систематизировать информацию в области физики квантовых вычислений.

Владеть:

- приемами и методами построения эффективных квантовых моделей;
- навыками решения задач квантовой теории информации;
- профессиональными знаниями для анализа и синтеза физической информации в области физики квантовых вычислений.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №4
Контактная работа при проведении учебных занятий (всего):	48	48
В том числе:		
Занятия лекционного типа	32	32
Занятия семинарского типа	16	16

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 60 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).

4.1. Занятия лекционного типа.

No		
п/п	Тематика лекционных занятий / краткое содержание	
1	Введение в квантовую информацию	
_	Рассматриваемые вопросы:	
	- классические и квантовые вычисления;	
	- биты и кубиты;	
	- квантовые вычислители и симуляторы;	
	- основные элементы квантовых вычислительных систем и сетей;	
- требования, предъявляемые к квантовому компьютеру.		
2	Информация и энтропия. Связь энтропии и информации	
	Рассматриваемые вопросы:	
	- теоремя Лиувилля;	
	- микроканоническое распределение;	
	- физическая энтропия, формула Больцмана, второе начало термодинамики;	
	- информация;	
	- демон Максвелла.	
	- информационная энтропия Шеннона;	
	- условная энтропия;	
	- сжатие данных;	
	- теорема Шеннона.	
3	Квантовое состояние	
	Рассматриваемые вопросы:	
	- описание состояний в квантовой механике, волновая функция и принцип суперпозиции;	
	- чистые и смешанные состояния;	
	- вычисление средних величин; - матрица и оператор плотности.	
4	Основные понятия квантовой теории информации	
'	Рассматриваемые вопросы:	
	- энтропия фон Неймана;	
	- вычисление энетропии фон Неймана и Шеннона для двухуровневой системы;	
	- неравенство Клейна;	
	- совместная энтропия, взаимная информация.	
5	Теорема о запрете клонирования	
	Рассматриваемые вопросы:	
	- различие между классической и квантовой информацией, достижимая информация;	
	- теорема о запрете клонирования;	
	- квантовый канал связи;	
	- теорема Шумахера.	
6	Кубиты	
	Рассматриваемые вопросы:	
	- двухуровневая система, операции над единичными битами;	
	- геометрическое представление состояния кубита;	
	- чистые и смешанные состояния;	
	- оператры Паули;	
	- преобразование Адамара.	
7	Оптическая реализация кубитов	
	Рассматриваемые вопросы:	
	- оптическая реализация кубитов, поляризованные фотоны;	
	- интерферометры Маха-Цендера и Юнга;	

No		
п/п	Тематика лекционных занятий / краткое содержание	
11/11	пропольная и поперенная когерентиость	
	- продольная и поперечная когерентность; - квантовая интерференция;	
	- интерференция одиночных фотонов;	
	- вектор Джонса и поляризационные преобразования;	
- вектор джонса и поляризационные преобразования, - фазовые пластинки;		
	- квантоваы состояния высокой размерности.	
8	Квантовая теория измерений	
O	Рассматриваемые вопросы:	
	- классические вероятностные модели;	
	- приготовление классического состояния;	
	- вероятностные модели;	
	- прямые и косвеные измерения;	
	- опыты Штерна и Герлаха;	
	- измерительный и проекционный постулаты;	
	- квантовая томография.	
9	Квантовые состояния света	
	Рассматриваемые вопросы:	
	- определение квантового (неклассического) света;	
	- полуклассическая теория фотодетектирования;	
	- формула Манделя;	
	- распределение Глаубера-Сударшана;	
	- мера Ли;	
	- примеры.	
10	Парадокс Эйнштейна-Подольского-Розена	
10	Рассматриваемые вопросы:	
	- вариант Бома;	
	- антисимметрические состояния и их инвариантность относительно поворта базиса;	
	- неравенства Белла;	
	- парадокс Белла для трех наблюдаемых;	
	- примеры реализации.	
11	Перепутанные состояния	
	Рассматриваемые вопросы:	
	- составные, двухкомпонентные и коррелированные системы;	
	- роль перепутанных состояний в квантовой информации;	
	- оптическая реализация перепутанных состояний;	
	- перепутывание во времени;	
	- перепутывание состояний с непрерывными переменными.	
12	Меры перепутывания	
	Рассматриваемые вопросы:	
	- состояние Белла;	
	- чистые и перепутанные состояния;	
	- разложение Шмидта, число Шмидта;	
	- энтропия перепутывания.	
13	Квантовая телепортация кубитов	
	Рассматриваемые вопросы:	
	- копирование и передача квантовых состояний;	
	- протокл квантовой телепортации;	
	- требования к протоколу квантовой телепортации;	
	- экспериментальные реализации квантовой телепортации;	
	- протокол сверхплотной кодировки кубитов;	
	- проокол обмена перепутыванием.	
	1	

№	T	
п/п	Тематика лекционных занятий / краткое содержание	
14	Квантовые вычисления на основе ультрахолодных атомов	
	Рассматриваемые вопросы:	
	- принципы квантовых вычислений на основе ултрахолодных атомов;	
	- концепция ридберговской блокады;	
	- модель Хаббарда.	
15	Квантовые вычисления на основе ионов в ловушках	
	Рассматриваемые вопросы:	
	- принципы квантовых вычислений на основе ионов в ловушках;	
	- нативные гейты для ионной платформы;	
	- эскспериментальные реализации квантовых вычислений на основе ионов в ловушках.	
16	Физическая реализация квантовых вычислений	
	Рассматриваемые вопросы:	
	- вращение кубита вокруг различных осей с использованием осцилляций Раби;	
	- примеры применения схем квантовой коррекции ошибок;	
	- управление квантовыми состояниями ультрахолодных атомов и ионов;	
	- твердотельные реализации квантовых вычислений.	

4.2. Занятия семинарского типа.

Лабораторные работы

No			
п/п	Наименование лабораторных работ / краткое содержание		
1	Информация в дискретных и непрерывных сообщениях		
1	В результате выполнения лабораторной работы студент получит навык практического определения		
	количества информации в различных дискретных;		
2	Информация в дискретных и непрерывных сообщениях (продолжение)		
	В результате выполнения лабораторной работы студент получит навык практического определения		
	количества информации в непрерывных сообщениях.		
3	Изучение работы оптического квантового генератора		
	В результате выполнения лабораторной работы студент изучит основные принципы работы		
	оптического квантового генератора;		
4	Изучение работы оптического квантового генератора(продолжение)		
	В результате выполнения лабораторной работы студент научиться анализировать степень и вид		
	поляризации света.		
5	Квантовое распределение ключа на боковых частотах фазомодулированного		
	излучения		
	В результате выполнения лабораторной работы студент изучит основные принципы фазовой		
	модуляции монохроматического излучения;		
6	Квантовое распределение ключа на боковых частотах фазомодулированного		
	излучения(продолжение)		
	В результате выполнения лабораторной работы студент исследует влияние основных характеристик		
	системы квантового распределения ключа на боковых частотах на ее производительность.		
7	Проверка нарушения неравенства Белла		
	В результате выполнения лабораторной работы студент изучит свойства запутанных состояний,		
	построит квантовые логические схемы для приготовления и измерения запутанных состояний;		
8	Проверка нарушения неравенства Белла(продолжение)		
	В результате выполнения лабораторной работы студент проверит нарушение неравенства Белла.		

4.3. Самостоятельная работа обучающихся.

№	Рин ормостоятан ной работи
Π/Π	Вид самостоятельной работы
1	Подготовка к лабораторным работам
2	Работа с лекционным материалом
3	Работа с литературой
4	Подготовка к промежуточной аттестации.
5	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

	сиин дисциилины (модули).	
№	Библиографическое описание	Место доступа
п/п	70 1	1 (72)
1	Квантовая физика: Метод. указ. к лаб.	https://library.miit.ru/bookscatalog/metod/04-
	раб. по дисц. Физика для студ. всех спец.	63044.pdf
	ИУИТ, ИСУТЭ, ИЭФ, ИТТОП,	
	Вечерний. Работы № 39, 45, 54, 56, 59 /	
	А.В. Пауткина, В.Г. Колотилова, С.В.	
	Мухин, И.В. Пыканов; Ред. В.А.	
	Никитенко, Е.А. Серов; МИИТ. Каф.	
	Физика-2.М.: МИИТ, 2007 82 с.	
2	Блохинцев Д. И. Основы квантовой	https://e.lanbook.com/book/210197
	механики: учебное пособие / Д. И.	
	Блохинцев. — 7-е изд., стер. — Санкт-	
	Петербург : Лань, 2022. — 672 с. —	
	ISBN 978-5-8114-0554-1.	
3	Демидович Б. П. Математические	https://e.lanbook.com/book/409463
	основы квантовой механики: учебное	
	пособие для вузов / Б. П. Демидович. —	
	4-е изд., стер. — Санкт-Петербург:	
	Лань, 2024. — 200 с. — ISBN 978-5-507-	
	50047-5.	
4	Основы квантовой информации: учеб.	https://library.miit.ru/bookscatalog/metod/DC-
	пособие для студ. спец. Системы	811.pdf
	обеспечения движения поездов / Л. М.	
	Журавлева, О. Е. Журавлев; МИИТ. Каф.	
	Автоматика, телемеханика и связь на ж	
	д. транспорте М.: РУТ (МИИТ), 2018	
	60 с Б. ц.	
5	Прилипко, В. К. Физические основы	https://e.lanbook.com/book/412214
	квантовых вычислений. Динамика	
	кубита : монография / В. К. Прилипко,	

	И. И. Коваленко. — 2-е изд., стер. —	
	Санкт-Петербург : Лань, 2024. — 216 с.	
	— ISBN 978-5-507-50139-7.	
6	Квантовая физика: учебно-метод.	https://library.miit.ru/bookscatalog/metod/DC-
	пособие к лаб. работам по физике 45, 47,	1253.pdf
	50, 52, 55, 147, 150, 151, 155 для студ.	
	спец. ИУИТ, ИТТСУ, ИПСС / Л. М.	
	Касименко, С. М. Кокин, С. В. Мухин [и	
	др.] ; ред.: С. М. Кокин, В. А.	
	Никитенко; МИИТ. Каф. Физика М.:	
	РУТ (МИИТ), 2020 100 с Б. ц.	
7	Элементы квантовой механики: учеб.	https://library.miit.ru/bookscatalog/upos/DC-
	пособие для студ. ИУИТ, ИПСС,	935.pdf
	ИТТСУ, ИПТ и Вечернего ф-та / Н. П.	
	Наумов; МИИТ. Каф. Физика М.: РУТ	
	(МИИТ), 2019 22 с Б. ц	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Научно-техническая библиотека РУТ (МИИТ) (http://library.miit.ru).

Электронно-библиотечная система ЛАНЬ (https://e.lanbook.com/).

Образовательная платформа Юрайт (https://urait.ru/).

Информационный портал Научная электронная библиотека eLIBRARY.RU (www.elibrary.ru);

Единая коллекция цифровых образовательных ресурсов (http://window.edu.ru).

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Интернет-браузер (Yandex и др.)

Microsoft Windows.

Microsoft Office

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебная аудитория для проведения учебных занятий (занятий лекционного типа, лабораторных работ):

- компьютер преподавателя, рабочие станции студентов, мультимедийное оборудование, доска.

Аудитория подключена к сети «Интернет».

9. Форма промежуточной аттестации:

Экзамен в 4 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

заведующий кафедрой, доцент, д.н.

кафедры «Физика» Н.В. Быков

Согласовано:

Заведующий кафедрой ВССиИБ Б.В. Желенков

Заведующий кафедрой Физика Н.В. Быков

Председатель учебно-методической

комиссии Н.А. Андриянова