МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 02.03.02 Фундаментальная информатика и информационные технологии, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Фундаментальные основы квантовых технологий

Направление подготовки: 02.03.02 Фундаментальная информатика и

информационные технологии

Направленность (профиль): Квантовые вычислительные системы и сети

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 1178210

Подписал: заведующий кафедрой Быков Никита Валерьевич

Дата: 15.05.2025

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины (модуля) «Фундаментальные основы квантовых технологий» являются:

- формирование основных физических представлений о технологических основах построения квантовых вычислительных систем и сетей:
- изучение физических основ способов построения квантовых компьютеров.

Задачами дисциплины (модуля) «Фундаментальные основы квантовых технологий» являются:

- изучение основных способов построения квантовых компьютеров;
- изучение основ теории твердого тела;
- изучение свойств низкоразмерных квантовых структур;
- изучение ядерного магнитного резонанса как основы квантовой архитектуры;
 - изучение основных технологий осуществления квантовых вычислений.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-1** Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности;
- **ПК-1** Способность свободно владеть профессиональными знаниями для анализа и синтеза физической информации в области физики квантовых вычислений;
- **ПК-2** Способность к поиску, критическому анализу, обобщению и систематизации научной информации в области физики квантовых вычислений.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- основные положения классической и квантовой теории твердого тела, включая теории сверхпроводимости;
 - основные способы построения квантовых вычислительных систем;
 - основные положения теории ядерного магнитного резонанса.

Уметь:

- рассчитывать основные магнитные и диэлектрические свойства твердых тел;
- определять основные характеристики квантовых низкоразмерных структур;
 - определять основные свойства квантовых систем;
 - анализировать зонную структуру твердых тел;
 - определять свойства сверхпроводящих систем;
 - использовать основы метода ядерного магнитного резонанса.

Владеть:

- методами определения свойств твердых тел во внешних полях;
- методами анализа свойств квантовых технологических систем;
- методами классификации способов построения квантовых вычислительных систем.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 4 з.е. (144 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №5
Контактная работа при проведении учебных занятий (всего):	64	64
В том числе:		
Занятия лекционного типа	32	32
Занятия семинарского типа	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 80 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован

полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.

4. Содержание дисциплины (модуля).

4.1. Занятия лекционного типа.

No		
п/п	Тематика лекционных занятий / краткое содержание	
1	Обзор основных принципов построения квантовых компьютеров	
	Рассматриваемые вопросы:	
	- история развития квантовых компьютеров;	
	- основные требования к построению квантовых компьютеров и сетей;	
	- принципы построения квантовых компьютеров и сетей.	
2	Основы теории конденсированных сред	
	Рассматриваемые вопросы:	
	- кристаллы и кристаллическая решетка;	
	- анизотропия кристаллов;	
	- типы связи в кристаллах;	
	- упругие волны в кристаллах;	
	- акустические и оптические ветви колебаний;	
	- фононы, зоны Бриллэна.	
3	Магнитные и диэлектрические свойства твердых тел	
	Рассматриваемые вопросы:	
	- классификация твердых тел по магнитным свойствам;	
	- ферромагнетизм и обменное взаимодействие;	
	- магнитные спектры веществ;	
	- характеристики диэлектриков и виды поляризации;	
	- свойства диэлектриков.	
4	Зонная теория твердых тел	
	Рассматриваемые вопросы:	
	- одноэлектронное приближение, теорема Блоха;	
	- энергетические зоны;	
	- модель Кронинга-Пенни;	
	- структура энергетических зон;	
	- носители заряда, эффективная масса;	
	- примеси и примесные материалы.	
5	Квантование энергии электрона в магнитном поле	
	Рассматриваемые вопросы:	
	- квантование энергетического спектра свободных электронов в магнитном поле;	
	- уровни Ландау;	
	- спиновое расщепление уровней Ландау;	
	- спектральная плотность состояний электронов в магнитном поле;	
	- квантовые осцилляционные эффекты.	
6	Сверхпроводимость	
	Рассматриваемые вопросы:	
	- сверхпроводящие материалы, эффект Мейснера;	

No	
п/п	Тематика лекционных занятий / краткое содержание
11/11	арарунгаранунун 1 и 2 года.
	- сверхпроводники 1 и 2 рода; - теория Бардина-Купера-Шриффера, куперовские пары;
	- эффекты Джозефсона;
	- высокотемпературная сверхпроводимость.
7	Сверхпроводимость второго рода
,	Рассматриваемые вопросы:
	- уравнения Гинзбурга-Ландау;
	- квантование магнитного потока;
	- критические магнитные поля.
8	Квантовые низкоразмерные структуры
O	Рассматриваемые вопросы:
	- энергетические уровни электрона в квантовой яме;
	- гетероструктуры;
	- оптические переходы между подзонами размерного квантования;
	- квантовые точки, понятие и классификация;
	- методы синтеза квантовых точек.
9	Приборы на квантовых точках
-	Рассматриваемые вопросы:
	- лазеры на квантовых точках и квантовых ямах;
	- квантово-каскадный лазер;
	- электрооптический модулятор;
	- светодиоды на основе квантовых точек.
10	Ядерный магнитный резонанс
	Рассматриваемые вопросы:
	- магнитные свойства ядер;
	- основы метода ядерного магнитного резонанса (ЯМР);
	- классическая теория ЯМР.
11	ЯМР спектроскопия
	Рассматриваемые вопросы:
	- основы метода ЯМР спектроскопии;
	- ЯМР спектроскопия высокого разрешения;
	- импульсная ЯМР спектроскопия;
	- приборы ЯМР исследований.
12	Фотоника
	Рассматриваемые вопросы:
	- линейные оптические процессоры;
	- полупроводниковый квантовый транзистор;
	- топологический фотонный чип.
13	Квантовые электродинамические резонаторы
	Рассматриваемые вопросы:
	- теория квантовых электродинамических резонаторов и их реализация;
	- эксперименты с ридберговскими атомами;
	- наблюдение осцилляций Раби;
	- синтез трехчастичного запутанного состояния.
14	Ионы в радиочастотной ловушке
	Рассматриваемые вопросы:
	- ионные ловушки;
	- охлаждение ионов;
	- колебательное движение ионов в кристалле;
	- рамановская схема;

№	Тематика лекционных занятий / краткое содержание	
п/п	тематика лекционных занятии / краткое содержание	
	- фононный кубит;	
	- измерение результатов;	
	- декогерентизация состояний в квантовом компьютере на ионах.	
15	Квантовый компьютер с архитектурой клеточных автоматов	
	Рассматриваемые вопросы:	
	- понятие клеточного автомата;	
	- основные свойства клеточных автоматов;	
	- периодическая структура двухуровневых элементов.	
16	Твердотельные и полупроводниковые квантовые компьютеры	
	Рассматриваемые вопросы:	
	- жидкостные и ядерные магниторезонансные ЯМР компьютеры;	
	- твердотельные ЯМР квантовые компьютеры;	
	- полупроводниковые ЯМР квантовые компьютеры;	
	- твердотельные компьютеры на квантовых точках;	
	- квантовые компьютеры на сверхпроводящих элементах.	

4.2. Занятия семинарского типа.

Практические занятия

No	Тематика практических занятий/краткое содержание	
п/п		
1	Принципы построения квантовых компьютеров	
	В результате выполнения практического задания студент получает умение классификации	
	основных методов построения квантовых компьютеров, умение анализа необходимых требований к	
	квантовым компьютерам.	
2	Конденсированные среды	
	В результате выполнения практического задания студент получает навык решения задач по	
	определению типов кристаллических решеток, анализа типов связей в кристаллах; построения	
	акустических и оптических ветвей спектров фононов.	
3	Магнитные и диэлектрические свойства твердых тел	
	В результате выполнения практического задания студент получает навык решения задач	
	определения магнитных и диэлектрических свойств твердых тел.	
4	Зонная теория твердых тел	
	В результате выполнения практического задания студент получает навык построения зонных	
	структур твердых тел различного типа, анализа свойств полупроводников, в том числе нахождение	
	концентрации носителей заряда.	
5	Квантование энергии электрона в магнитном поле	
	В результате выполнения практического задания студент получает навык определения уровней	
	Ландау, решения задач по определению энергетических спектров электронов.	
6	Сверхпроводимость	
	В результате выполнения практического задания студент получает навык применения основных	
	положений теории Бардина-Купера-Шриффера для анализа свойств сверхпроводников.	
7	Сверхпроводимость второго рода	
	В результате выполнения практического задания студент получает навык использования уравнения	
	Гинзбурга-Ландау для анализа основных свойств сверхпроводников, а также определения	
	критических параметров сверхпроводников.	
8	Квантовые низкоразмерные структуры	
	В результате выполнения практического задания студент получает навык решения задач	

No	Тематика практических занятий/краткое содержание		
Π/Π			
	определения энергетических уровней электрона в квантовых ямах, анализа переходов между		
	подзонами размерного квантования.		
9	Приборы на квантовых точках		
	В результате выполнения практического задания студент получает навык решения задач для		
	определения свойств приборов на квантовых точках.		
10	Ядерный магнитный резонанс		
	В результате выполнения практического задания студент получает умение использования основных		
	положений теории ядерного магнитного резонанса для решения практических задач.		
11	ЯМР спектроскопия		
	В результате выполнения практического задания студент получает навык решения различных задач		
	ЯМР спектроскопии.		
12	Фотоника		
	В результате выполнения практического задания студент получает навык определения основных		
	свойств линейных оптических процессоров, полупроводниковых квантовых транзисторов и		
	топологических фотонных чипов.		
13	Квантовые электродинамические резонаторы		
	В результате выполнения практического задания студент получает навык использования теории		
	квантовых электродинамических резонаторов для оценки основных свойств квантовых		
	компьютеров, создаваемых на их основе.		
14	Ионы в радиочастотной ловушке		
	В результате выполнения практического задания студент получает умение анализировать свойства		
	ионных ловушек, рассчитывать колебательные движения ионов в кристалле.		
15	Квантовый компьютер с архитектурой клеточных автоматов		
	В результате выполнения практического задания студент получает навык решения задач по		
	тематике клеточных автоматов, изучает основные свойства клеточных автоматов и методы		
	построения квантовых компьютеров с архитектурой клеточных автоматов.		
16	Твердотельные полупроводниковые квантовые компьютеры		
	В результате выполнения практического задания студент получает умение анализировать основные		
	методы построения квантовых компьютеров на ЯМР, их достоинства и недостатки.		

4.3. Самостоятельная работа обучающихся.

№	Вид самостоятельной работы
п/п	•
1	Подготовка к практическим занятиям.
2	Работа с лекционным материалом.
3	Работа с литературой.
4	Подготовка к промежуточной аттестации.
5	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

No	Библиографинаское описание	Масто поступа
Π/Π	Библиографическое описание	Место доступа

1	Физика твердого тела: учебно-метод.	https://library.miit.ru/bookscatalog/metod/DC-
1	пособие к лаб. работам 71, 89 для студ.	260.pdf
	ИУИТ, ИПСС, ИТТСУ и Вечернего	
	факультета / С. В. Мухин, С. М. Кокин;	
	под ред. В. А. Никитенко; МИИТ. Каф.	
	Физика М.: РУТ(МИИТ), 2017 36 с.	
2	Савельев, И. В. Курс физики. В 3 томах.	https://e.lanbook.com/book/367055
	Том 3. Квантовая оптика. Атомная	https://e.ianbook.com/book/30/033
	физика. Физика твердого тела. Физика	
	1 -	
	атомного ядра и элементарных частиц /	
	И. В. Савельев. — 9-е изд., стер. —	
	Санкт-Петербург: Лань, 2024. — 308 с.	
	— ISBN 978-5-507-47404-2.	1,
3	Прудников, В. В. Квантово-	https://e.lanbook.com/book/233297
	статистическая теория твердых тел:	
	учебное пособие для вузов / В. В.	
	Прудников, П. В. Прудников, М. В.	
	Мамонова. — 4-е изд., стер. — Санкт-	
	Петербург : Лань, 2022. — 448 с. —	
	ISBN 978-5-507-44520-2.	
4	Квантовые точки: синтез, свойства и	https://e.lanbook.com/book/196960
	методы их характеризации: учебное	
	пособие / П. П. Гладышев, С. А.	
	Новикова, Е. В. Андреев [и др.]. —	
	Дубна: Государственный университет	
	«Дубна», 2021. — 52 с. — ISBN 978-5-	
	89847-624-3.	
5	Основы квантовой информации: учеб.	https://library.miit.ru/bookscatalog/metod/DC-
	пособие для студ. спец. Системы	811.pdf
	обеспечения движения поездов / Л. М.	
	Журавлева, О. Е. Журавлев; МИИТ. Каф.	
	Автоматика, телемеханика и связь на ж	
	д. транспорте М.: РУТ (МИИТ), 2018	
	60 с Б. ц.	
6	Прилипко, В. К. Физические основы	https://e.lanbook.com/book/412214
	квантовых вычислений. Динамика	
	кубита: монография / В. К. Прилипко,	
	И. И. Коваленко. — 2-е изд., стер. —	
	Санкт-Петербург : Лань, 2024. — 216 с.	
	— ISBN 978-5-507-50139-7.	
7	Моргунов, Р. Б. Физические основы	https://e.lanbook.com/book/319688
	квантовых вычислений: учебное	
	пособие / Р. Б. Моргунов, О. В. Коплак,	
	О.С.Дмитриев. — Тамбов : ТГТУ, 2017.	
	— 98 c. — ISBN 978-5-8265-1690-4.	
	1	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Научно-техническая библиотека РУТ (МИИТ) (http://library.miit.ru).

Электронно-библиотечная система ЛАНЬ (https://e.lanbook.com/).

Образовательная платформа Юрайт (https://urait.ru/).

Информационный портал Научная электронная библиотека eLIBRARY.RU (www.elibrary.ru);

Единая коллекция цифровых образовательных ресурсов (http://window.edu.ru).

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Интернет-браузер (Yandex и др.)

Microsoft Windows.

Microsoft Office

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебная аудитория для проведения учебных занятий (занятий лекционного типа, практических занятий):

- компьютер преподавателя, рабочие станции студентов, мультимедийное оборудование, доска.

Аудитория подключена к сети «Интернет».

9. Форма промежуточной аттестации:

Экзамен в 5 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

заведующий кафедрой, доцент, д.н.

кафедры «Физика» Н.В. Быков

Согласовано:

Заведующий кафедрой ВССиИБ Б.В. Желенков

Заведующий кафедрой Физика Н.В. Быков

Председатель учебно-методической

комиссии Н.А. Андриянова