МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности 23.05.03 Подвижной состав железных дорог, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Химия

Специальность: 23.05.03 Подвижной состав железных дорог

Специализация: Технология производства и ремонта

подвижного состава

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ) ID подписи: 41799

Подписал: заведующий кафедрой Сухов Филипп Игоревич Дата: 15.10.2025

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины "Химия" являются:

- 1. Сформировать у студентов, теоретический фундамент для дальнейшего изучения химических и естественных наук, способствовать приобретению студентами знаний по основным вопросам общей и неорганической химии;
- 2. Развить творческое мышление и научное мировоззрение, раскрыть методологию химической науки.
- 3. Показать связь химии с жизнью современного общества и её роль в решении экологических проблем.

Задачи:

Главной задачей учебной обеспечение дисциплины является инженера теоретической подготовкой по химии железнодорожного транспорта, которая позволит ему быстрее и качественнее усваивать прикладные разделы химии, ориентироваться В частных вопросах, возникающих при освоении новой техники и в строительстве. В ходе необходимо обучения дисциплине добиться освоения теоретических основ химии, без которых невозможно понимание свойств и превращений химических веществ, а также химии элементов и их соединений, которые могут быть использованы как.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ОПК-1 - Способен решать инженерные задачи в профессиональной деятельности с использованием методов естественных наук, математического анализа и моделирования.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

Основные понятия и законы химии; Строение атомов и молекул; Основные

квантово-механические представления об образовании химических связей; Основные классы

неорганических соединений; Номенклатуру неорганических соединений; Физико-химические

методы исследования веществ; Периодический закон; Термодинамику и кинетику химических

процессов; Свойства растворов; Теорию электролитической диссоциации;

Окислительно-восстановительные реакции

Уметь:

Использовать основных понятий и законов в решении химических задач; Показать принципы,

лежащие в основе классификации соединений и химических реакций; Ознакомить с

термодинамикой и кинетикой химических процессов; Производить расчёты по приготовлению

растворов.

Владеть:

Навыками по обеспечению химической и экологической безопасности

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 2 з.е. (72 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №1
Контактная работа при проведении учебных занятий (всего):	32	32
В том числе:		
Занятия лекционного типа	16	16
Занятия семинарского типа	16	16

3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 40 академических часа (ов).

- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

No	Тематика лекционных занятий / краткое содержание		
Π/Π			
1	Химия как наука		
	Рассматриваемые вопросы:		
	- Планируемые результаты		
	- понимать строение веществ, теоретические основы		
2	Атом		
	Рассматриваемые вопросы:		
	Энергетика		
	химических процессов		
	- Химическая термодинамика.		
	- Первый закон термодинамики.		
	- Энтальпия, ее физический смысл		
	- Второй закон термодинамики.		
	- Энтропия. Свободная энергия Гиббса		
	-Атом как мельчайшая частица химического элемента. Электронная структура		
3	Химическая связь. Метод молекулярных орбиталей.		
	Рассматривваемые вопросы:		
	-Химическая связь.		
	-Метод молекулярных орбиталей.		
4	Химические системы и их термодинамическая характеристика.		
	Химические системы и их термодинамическая характеристика.		
	Рассматриваемые вопросы:		
	- Химические системы и их термодинамическая характеристика Кинетика химических		
	реакций.		
	-Химическое равновесие		
	- Скорость химической реакции.		
	- Закон действующих масс.		
	- Энергия активации.		
	- Зависимость скорости химической реакции от температуры (правило Вант-Гоффа, уравнение		
	Аррениуса).		
5	Элементы аналитической химии		
	Рассматриваемые вопросы:		
	-Элементы аналитической химии		
	- Основные понятия аналитической химии.		
	- Классификация и возможности методов анализа.		
	- Химические методы анализа.		

No	Тематика лекционных занятий / краткое содержание		
п/п	тематика лекционных запятии / краткое содержание		
	- Физико-химические методы анализа.		
	- Практическое применение аналитической химии в производственных условиях.		
6	Химия элементов		
	Рассматриваемые вопросы:		
	- Водород -общие сведения. Изотопы водорода. Химические свойства (с примерами химических		
	реакций).		
	- Перспективные источники энергии на основе водорода и его изотопов.		
	- Взрывоопасность Водорода. Гидриды.		
7	Щелочные металлы.		
	Рассматриваемые вопросы:		
	- Закономерности физических свойств в группе (1 группа).		
	- Химические свойства щелочных металлов.		
	- Получение щелочных металлов. Нахождение в природе.		
	- Применение щелочных металлов. Источники энергии из щелочных металлов.		
8	Таблица Д.И. Менделеева		
	Рассматриваемые вопросы:		
	- Закономерности физических свойств в группе.		
	- Химические свойства (с примерами химических реакций).		
	- Нахождение в природе, получение.		
	- Применение.		

4.2. Занятия семинарского типа.

Лабораторные работы

No	Наумоморомия набороторум и робот / кратков со наржамия			
п/п	Наименование лабораторных работ / краткое содержание			
1	СПОСОБЫ ВЫРАЖЕНИЯ КОНЦЕНТРАЦИИ РАСТВОРОВ. ОПРЕДЕЛЕНИЕ			
	КОНЦЕНТРАЦИИ СОЛЯНОЙ КИСЛОТЫ			
	В результате выполнения лабораторной работы студенты узнают:			
	- какие существуют способы выражения концентраций			
	- метод титрования			
2	ОПРЕДЕЛЕНИЕ ВРЕМЕННОЙ ЖЕСТКОСТИ ВОДЫ			
	В результате выполнения практической работы студенты узнают что такое жесткость воды,			
	способы устранения различной жесткости, ГОСТы в области контроля качества различных вод и			
	содержания общего содержания металлов в воде			
3	СКОРОСТЬ ХИМИЧЕСКИХ РЕАКЦИЙ. ХИМИЧЕСКОЕ РАВНОВЕСИЕ			
	В результате выполнения лабораторной работы студенты узнают:			
	- что такое скорость химических реакций			
	- момент химического равновесия			
	- 3ДМ			
	- Принцип Ле-Шателье			
	- понятие диссоциации и ассоциации			
	- факторы влияющие на скорость реакции			
4	ГИДРОЛИЗ СОЛЕЙ			
	В результате выполнения практической работы студенты ознакомятся с:			
	- понятие гидролиз			
	- соли			
	- гидролиз солей			
	- рН среды			

№ п/п	Наименование лабораторных работ / краткое содержание
5	ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ ПРОЦЕССЫ
	В результате выполнения практической работы студенты узнают что такое ОВР реакции, что такое
	окисление, восстановление, процсессы протекающие при окислении и восстановлении
6	ЭЛЕКТРОХИМИЧЕСКИЕ ПРОЦЕССЫ. ГАЛЬВАНИЧЕСКИЙ ЭЛЕМЕНТ
	В результате выполнения практической работы студенты узнают что такое электрохимические
	процессы, что такое гальванический элемент, ЭДС, стандартный потенциал, потенциалы, расчет
	ЭДС гальванического элемента
7	КОРРОЗИЯ МЕТАЛЛОВ
	В результате выполнения практической работы студенты узнают что такое процессы окисления на
	металлах, процесс коррозии металлов.
8	СПОСОБЫ ЗАЩИТЫ ОТ КОРРОЗИИ
	В результате выполнения практической работы студенты узнают как защитить металлы от
	коррозии, какие способы защиты самые продуктивные. Процессы проходящие на металлах при
	различных способах защиты от коррозии.

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Изучение дополнительной литературы.
2	Подготовка к промежуточной аттестации.
3	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Павлова, Е. И. Экология транспорта: учебник и практикум для вузов / Е. И. Павлова, В. К. Новиков. — 7-е изд., перераб. и доп. — Москва: Издательство Юрайт, 2025. — 416 с. — (Высшее образование). — ISBN 978-5-534-16734-4.	https://urait.ru/bcode/560368
2	Экология: учебник и практикум для вузов / под редакцией О. Е. Кондратьевой. — Москва: Издательство Юрайт, 2025. — 283 с. — (Высшее образование). — ISBN 978-5-534-00769-5.	https://urait.ru/bcode/560577
3	Росин, И. В. Химия: учебник и практикум для вузов / И. В. Росин, Л. Д. Томина, С. Н. Соловьев. — Москва: Издательство Юрайт, 2025. — 328 с. — (Высшее образование). — ISBN 978-5-534-15973-8.	https://urait.ru/bcode/580188
4	Карнаух, Н. Н. Охрана труда: учебник для вузов / Н. Н. Карнаух. — 2-е изд., перераб. и доп. — Москва:	https://urait.ru/bcode/559672

Издательство Юрайт, 2025. — 343 с. — (Высшее	
образование). — ISBN 978-5-534-15940-0.	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/).

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru).

Образовательная платформа «Юрайт» (https://urait.ru/).

Общие информационные, справочные и поисковые системы «Консультант Плюс»(https://consultantplus.helpline.ru/), «Гарант»(https://garant-pr.ru/).

Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/).

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/).

- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).
 - 1. Microsoft Internet Explorer (или другой браузер);
 - 2. Операционная система Microsoft Windows;
 - 3. Microsoft Office;
- 4. При проведении занятий с применением электронного обучения и дистанционных образовательных технологий, могут применяться следующие средства коммуникаций: ЭИОС РУТ(МИИТ), Microsoft Teams
- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования

9. Форма промежуточной аттестации:

Зачет в 1 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, к.н. кафедры «Химия и

инженерная экология» Ю.К. Боландова

Согласовано:

Заведующий кафедрой ТТМиРПС М.Ю. Куликов

Заведующий кафедрой ХиИЭ Ф.И. Сухов

Председатель учебно-методической

комиссии С.В. Володин