МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности 23.05.03 Подвижной состав железных дорог, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Химия

Специальность: 23.05.03 Подвижной состав железных дорог

Специализация: Высокоскоростной наземный транспорт

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ) О полписи: 41799

Подписал: заведующий кафедрой Сухов Филипп Игоревич Дата: 15.10.2025

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины "Химия (общая)" являются:

- 1. Сформировать у студентов, теоретический фундамент для дальнейшего изучения химических и естественных наук, способствовать приобретению студентами знаний по основным вопросам общей и неорганической химии;
- 2. Развить творческое мышление и научное мировоззрение, раскрыть методологию химической науки.
- 3. Показать связь химии с жизнью современного общества и её роль в решении экологических проблем.

Задачи:

Главной задачей учебной обеспечение дисциплины является инженера теоретической подготовкой по химии железнодорожного транспорта, которая позволит ему быстрее и качественнее усваивать прикладные разделы химии, ориентироваться В частных вопросах, возникающих при освоении новой техники и в строительстве. В ходе необходимо обучения дисциплине добиться освоения теоретических основ общей химии, без которых невозможно понимание свойств и превращений химических веществ, а также химии элементов и их соединений, которые могут быть использованы как.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ОПК-1 - Способен решать инженерные задачи в профессиональной деятельности с использованием методов естественных наук, математического анализа и моделирования.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- Основные понятия и законы химии;
- Строение атомов и молекул;
- Основные квантово-механические представления об образовании химических связей;
 - Основные классы неорганических соединений;
 - Номенклатуру неорганических соединений;

- Физико-химические методы исследования веществ;
- Периодический закон;
- Термодинамику и кинетику химических процессов;
- Свойства растворов;
- Теорию электролитической диссоциации;
- Окислительно-восстановительные реакции.

Уметь:

- Использовать основные понятия и законов в решении химических задач;
- Показать принципы, лежащие в основе классификации соединений и химических реакций;
 - Ознакомить с термодинамикой и кинетикой химических процессов;
 - Производить расчёты по приготовлению растворов.

Владеть:

- навыками по обеспечению экологической безопасности
- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 2 з.е. (72 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
тип учесных занятии		Семестр №1
Контактная работа при проведении учебных занятий (всего):	32	32
В том числе:		
Занятия лекционного типа	16	16
Занятия семинарского типа	16	16

3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 40 академических часа (ов).

- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№	T			
Π/Π	Тематика лекционных занятий / краткое содержание			
1	 Химия как наука Рассматриваемые вопросы: Планируемые результаты понимать строение веществ, теоретические основы 			
2	Атом			
	Рассматриваемые вопросы:			
	- Энергетика химических процессов			
	- Химическая термодинамика.			
	- Первый закон термодинамики Энтальпия, ее физический смысл.			
	- Второй закон термодинамики.			
	- Энтропия. Свободная энергия Гиббса			
	-Атом как мельчайшая частица химического элемента. Электронная структура			
3	Периодический закон и периодическая система элементов Д.И. Менделеева			
	Рассматриваемые вопросы:			
	- Периодический закон и периодическая система элементов Д.И. Менделеева			
4	Химическая связь. Метод молекулярных орбиталей.			
	Рассматривваемые вопросы:			
	-Химическая связь.			
	-Метод молекулярных орбиталей.			
5	Химические системы и их термодинамическая характеристика.			
	Рассматриваемые вопросы:			
	- Химические системы и их термодинамическая характеристика.			
	- Кинетика химических реакций.			
	- Химическое равновесие.			
- Скорость химической реакции.				
	- Закон действующих масс.			
	- Энергия активации.			
	- Зависимость скорости химической реакции от температуры(правило Вант-Гоффа, уравнение			
	Аррениуса).			
	- Понятие о катализе.			
	- Химическое равновесие, его признаки.			
	- Константа химического равновесия			

$N_{\underline{0}}$				
п/п	Тематика лекционных занятий / краткое содержание			
6	Элементы аналитической химии			
	Рассматриваемые вопросы:			
	-Элементы аналитической химии			
	- Основные понятия аналитической химии.			
	- Классификация и возможности методов анализа.			
	- Химические методы анализа.			
	- Физико-химические методы анализа.			
	- Практическое применение аналитической химии в производственных условиях.			
7	Химия элементов			
	Рассматриваемые вопросы:			
	- Водород - общие сведения. Изотопы водорода. Химические свойства (с примерами химических			
	реакций).			
	- Перспективные источники энергии на основе водорода и его изотопов.			
	- Взрывоопасность Водорода. Гидриды.			
8	Щелочные металлы.			
	Рассматриваемые вопросы:			
	Закономерности физических свойств в группе (1 группа).			
	- Химические свойства щелочных металлов.			
	- Получение щелочных металлов. Нахождение в природе Применение щелочных металлов. Источники энергии из щелочных металлов.			

4.2. Занятия семинарского типа.

Лабораторные работы

	Viweepureprisit purerisi				
№ п/п	Наименование лабораторных работ / краткое содержание				
1	Способы выражения концентраций растворов				
	В результате выполнения лабораторных работ, у студентов появились компетенции по вопросам:				
	1. Основные законы химии				
	2. Модель атома. Основные сведения о строении вещества				
	3. Периодический закон				
2	Атом как мельчайшая частица химического элемента. Электронная структура				
	В результате лабораторной работы, у студентов появились компетенции по вопросам: -Атом как мельчайшая частица химического элемента.				
	- Электронная структура				
	Кинетика химических реакций. Химическое равновесие				
	1. Скорость химической реакции. Закон действующих масс.				
	2. Энергия активации. Зависимость скорости химической реакции от температуры (правило Вант-				
	Гоффа, уравнение Аррениуса).				
	3. Понятие о катализе.				
	4. Химическое равновесие, его признаки.				
	5. Константа химического равновесия. Принцип Ле-Шателье				
3	Периодический закон и периодическая система элементов Д.И. Менделеева.				
	В результате лабораторной работы, у студентов появились компетенции по вопросам:				
	- Понятие о дисперсных системах.				
	Классификации и примеры дисперсных систем.				
	- Физико-химическая теория растворов. Жесткость воды Свойства разбавленных растворов				
	неэлектролитов (законы Рауля). Осмос. Осмотическое давление. Закон Вант □ Гоффа для растворов				
	неэлектролитов				

No				
п/п	Наименование лабораторных работ / краткое содержание			
11/11	- Основные положения теории электролитической диссоциации. Водородный и гидроксильный			
	показатели среды.			
	5. Понятие о буферных системах.			
	6. Гидролиз солей.			
	7. Свойства коллоидных систем: оптические, кинетические, электрические.			
	 Адсорбция. Виды адсорбции. Поверхностно □активные вещества. 			
	9. Структурообразованиев коллоидных системах. Периодический закон и периодическая система			
	элементов Д.И. Менделеева.			
4	Химическая связь. Метод молекулярных орбиталей.			
	В результате лабораторной работы, у студентов появились компетенции по вопросам:			
	Химическая связь. Метод молекулярных орбиталей.			
5	Химические системы и их термодинамическая характеристика.			
	В результате лабораторных работ, у студентов появились компетенции по вопросам:			
	-Классификация окислительно □ восстановительных;			
	-реакций.			
	-Степень окисления элемента. Правила составления ОВР.			
	- Электрохимия. Электрический потенциал.			
	Устройство и работа гальванического элемента. Уравнение Нернста.			
	- Типы электродов: I,			
	II рода, окислительно □ восстановительные электроды.			
	- Химические источники тока			
	- Понятие об электролизе. Количественные соотношения при электролизе. Практическое			
6	применение электролиза.			
0	Химическая кинетика и её основной закон. Обратимые и необратимые реакции.			
	В результате лабораторных работ, у студентов появились компетенции по вопросам:			
	Элементы аналитической химии			
	-Основные понятия аналитической химии.			
	-Классификация и возможности методов анализа.			
	-Химические методы анализа.			
	-Физико-химические методы анализа.			
	-Практическое применение аналитической химии в производственных условиях			
7	OBP			
	В результате лабораторнойц работы студенты узнают:			
	-направление OBP			
	-понятие окисление			
	-понятие восстановление			
8	Гальванические элементы			
	В результате лабораторнойц работы студенты узнают:			
	- что такое ГЭ;			
	- что такое электрохимические процессы			
	- устройство ГЭ;			
	- добыча электролитов			
9	Коррозиия металлов			
	В результате лабораторнойц работы студенты узнают:			
	- процессы протекания коррозии			
	-защита от коррозии			

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Работа с лекционным материалом
2	Подготовка к лабораторным занятиям
3	Изучение литературы
4	Подготовка к промежуточной аттестации.
5	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Павлова, Е. И. Экология транспорта: учебник и	https://urait.ru/bcode/560368
	практикум для вузов / Е. И. Павлова, В. К. Новиков. —	
	7-е изд., перераб. и доп. — Москва : Издательство	
	Юрайт, 2025. — 416 с. — (Высшее образование). —	
	ISBN 978-5-534-16734-4.	
2	Экология : учебник и практикум для вузов / под	https://urait.ru/bcode/560577
	редакцией О. Е. Кондратьевой. — Москва:	
	Издательство Юрайт, 2025. — 283 с. — (Высшее	
	образование). — ISBN 978-5-534-00769-5.	
3	Росин, И. В. Химия: учебник и практикум для вузов /	https://urait.ru/bcode/580188
	И. В. Росин, Л. Д. Томина, С. Н. Соловьев. — Москва :	
	Издательство Юрайт, 2025. — 328 с. — (Высшее	
	образование). — ISBN 978-5-534-15973-8.	
4	Карнаух, Н. Н. Охрана труда : учебник для вузов / Н. Н.	https://urait.ru/bcode/559672
	Карнаух. — 2-е изд., перераб. и доп. — Москва:	
	Издательство Юрайт, 2025. — 343 с. — (Высшее	
	образование). — ISBN 978-5-534-15940-0.	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/).

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru).

Образовательная платформа «Юрайт» (https://urait.ru/).

Общие информационные, справочные и поисковые системы «Консультант Плюс»(https://consultantplus.helpline.ru/), «Гарант»(https://garant-pr.ru/).

Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/).

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/).

- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).
 - 1. Microsoft Internet Explorer (или другой браузер);
 - 2. Операционная система Microsoft Windows;
 - 3. Microsoft Office;
- 4. При проведении занятий с применением электронного обучения и дистанционных образовательных технологий, могут применяться следующие средства коммуникаций: ЭИОС РУТ(МИИТ), Microsoft Teams
- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования

9. Форма промежуточной аттестации:

Зачет в 1 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, к.н. кафедры «Химия и инженерная экология»

Ю.К. Боландова

Согласовано:

и.о. заведующего кафедрой ЭиЛ А.А. Чучин

Заведующий кафедрой ХиИЭ Ф.И. Сухов

Председатель учебно-методической

комиссии С.В. Володин