МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности
23.05.06 Строительство железных дорог, мостов и

транспортных тоннелей, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Химия

Специальность: 23.05.06 Строительство железных дорог,

мостов и транспортных тоннелей

Специализация: Тоннели и метрополитены

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 41799

Подписал: заведующий кафедрой Сухов Филипп Игоревич

Дата: 29.10.2025

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины "Химия " являются:

- 1. Сформировать у студентов, теоретический фундамент для дальнейшего изучения химических и естественных наук, способствовать приобретению студентами знаний по основным вопросам общей и неорганической химии;
- 2. Развить творческое мышление и научное мировоззрение, раскрыть методологию химической науки.
- 3. Показать связь химии с жизнью современного общества и её роль в решении экологических проблем.

Задачи:

Главной задачей учебной обеспечение дисциплины является инженера теоретической подготовкой по химии железнодорожного транспорта, которая позволит ему быстрее и качественнее усваивать прикладные разделы химии, ориентироваться В частных вопросах, возникающих при освоении новой техники и в строительстве. В ходе необходимо обучения дисциплине добиться освоения теоретических основ общей химии, без которых невозможно понимание свойств и превращений химических веществ, а также химии элементов и их соединений, которые могут быть использованы как.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ОПК-1 - Способен решать инженерные задачи в профессиональной деятельности с использованием методов естественных наук, математического анализа и моделирования.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- Основные понятия и законы химии;
- Строение атомов и молекул;
- Основные квантово-механические представления об образовании химических связей;
 - Основные классы неорганических соединений;
 - Номенклатуру неорганических соединений;

- Физико-химические методы исследования веществ;
- Периодический закон;
- Термодинамику и кинетику химических процессов;
- Свойства растворов;
- Теорию электролитической диссоциации;
- Окислительно-восстановительные реакции.

Уметь:

- Использовать основные понятия и законов в решении химических задач;
- Показать принципы, лежащие в основе классификации соединений и химических реакций;
 - Ознакомить с термодинамикой и кинетикой химических процессов;
 - Производить расчёты по приготовлению растворов.

Владеть:

- навыками по обеспечению экологической безопасности
- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №3
Контактная работа при проведении учебных занятий (всего):	32	32
В том числе:		
Занятия лекционного типа	16	16
Занятия семинарского типа	16	16

3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 76 академических часа (ов).

- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№	T. Y.		
п/п	Тематика лекционных занятий / краткое содержание		
1	Химия как наука		
	Рассматриваемые вопросы: - Планируемые результаты		
	- понимать строение веществ, теоретические основы		
2	Атом		
	Рассматриваемые вопросы:		
	- Энергетика химических процессов		
	- Химическая термодинамика.		
	- Первый закон термодинамики.		
	- Энтальпия, ее физический смысл.		
	- Второй закон термодинамики.		
	- Энтропия. Свободная энергия Гиббса		
	-Атом как мельчайшая частица химического элемента. Электронная структура		
3	Периодический закон и периодическая система элементов Д.И. Менделеева		
	Рассматриваемые вопросы:		
	- Периодический закон и периодическая система элементов Д.И. Менделеева		
4	Химическая связь. Метод молекулярных орбиталей.		
	Рассматривваемые вопросы:		
	-Химическая связь.		
	-Метод молекулярных орбиталей.		
5	Химические системы и их термодинамическая характеристика.		
	Рассматриваемые вопросы:		
	- Химические системы и их термодинамическая характеристика.		
	- Кинетика химических реакций.		
	- Химическое равновесие.		
	- Скорость химической реакции.		
	- Закон действующих масс.		
	- Энергия активации.		
	- Зависимость скорости химической реакции от температуры(правило Вант-Гоффа, уравнение		
	Аррениуса).		
	- Понятие о катализе.		
	- Химическое равновесие, его признаки.		
	- Константа химического равновесия		

No॒	T			
п/п	Тематика лекционных занятий / краткое содержание			
6	Элементы аналитической химии			
	Рассматриваемые вопросы:			
	-Элементы аналитической химии			
	- Основные понятия аналитической химии.			
	- Классификация и возможности методов анализа.			
	- Химические методы анализа.			
	- Физико-химические методы анализа.			
	- Практическое применение аналитической химии в производственных условиях.			
7	Химия элементов			
	Рассматриваемые вопросы:			
	- Водород - общие сведения. Изотопы водорода. Химические свойства (с примерами химических			
	реакций).			
	- Перспективные источники энергии на основе водорода и его изотопов.			
	- Взрывоопасность Водорода. Гидриды.			
8	8 Щелочные металлы.			
	Рассматриваемые вопросы:			
	Закономерности физических свойств в группе (1 группа).			
	- Химические свойства щелочных металлов.			
	- Получение щелочных металлов. Нахождение в природе.			
	- Применение щелочных металлов. Источники энергии из щелочных металлов.			
9 Элементы 3-й группы периодической системы элементов Д.И. Менделеен				
	Элементы 3-й группы периодической системы элементов Д.И. Менделеева.			
	Рассматриваемые вопросы:			
	- Закономерности физических свойств в группе.			
	- Химические свойства (с примерами химических реакций).			
	- Нахождение в природе, получение.			
	- Применение			
10	Элементы 3-й и 4-й группы периодической системы элементов Д.И. Менделеева.			
	Элементы 3-й и 4-й группы периодической системы элементов Д.И. Менделеева.			
	Рассматриваемые вопросы:			
	- Закономерности физических свойств в группе.			
	- Химические свойства (с примерами химических реакций).			
	- Нахождение в природе, получение.			
	- Применение.			

4.2. Занятия семинарского типа.

Лабораторные работы

№ п/п	Наименование лабораторных работ / краткое содержание		
1	Способы выражения концентраций растворов		
	В результате выполнения лабораторных работ, у студентов появились компетенции по вопросам:		
	1. Основные законы химии		
	2. Модель атома. Основные сведения о строении вещества		
	3. Периодический закон		
2	Атом как мельчайшая частица химического элемента. Электронная структура		
	В результате лабораторной работы, у студентов появились компетенции по вопросам:		
	-Атом как мельчайшая частица химического элемента.		
	- Электронная структура		

Mo			
No	Наименование лабораторных работ / краткое содержание		
п/п			
	Кинетика химических реакций. Химическое равновесие		
	1. Скорость химической реакции. Закон действующих масс.		
	2. Энергия активации. Зависимость скорости химической реакции от температуры (правило Вант-		
	Гоффа, уравнение Аррениуса). 3. Понятие о катализе.		
	 Химическое равновесие, его признаки. Константа химического равновесия. Принцип Ле-Шателье 		
3			
3	Периодический закон и периодическая система элементов Д.И. Менделеева.		
	В результате лабораторной работы, у студентов появились компетенции по вопросам:		
	- Понятие о дисперсных системах.		
	Классификации и примеры дисперсных систем.		
	- Физико-химическая теория растворов. Жесткость воды Свойства разбавленных растворов		
	неэлектролитов (законы Рауля). Осмос. Осмотическое давление. Закон Вант □ Гоффа для растворов		
	неэлектролитов - Основные положения теории электролитической диссоциации. Водородный и гидроксильный		
	показатели среды.		
	5. Понятие о буферных системах.		
	6. Гидролиз солей.		
	7. Свойства коллоидных систем: оптические, кинетические, электрические.		
	7. Своиства коллоидных систем: оптические, кинетические, электрические. 8. Адсорбция. Виды адсорбции. Поверхностно □активные вещества.		
	 Адсороция. Виды адсороции. Поверхностно □ активные вещества. Структурообразованиев коллоидных системах.Периодический закон и периодическая система 		
	элементов Д.И. Менделеева.		
4			
	В результате лабораторной работы, у студентов появились компетенции по вопросам: Химическая связь. Метод молекулярных орбиталей.		
5			
	В результате лабораторных работ, у студентов появились компетенции по вопросам:		
	-Классификация окислительно □ восстановительных;		
	-реакций.		
	-Степень окисления элемента. Правила составления ОВР.		
	- Электрохимия. Электрический потенциал.		
	Устройство и работа гальванического элемента. Уравнение Нернста.		
	- Типы электродов: І,		
	II рода, окислительно □ восстановительные электроды.		
	- Химические источники тока		
	- Понятие об электролизе. Количественные соотношения при электролизе. Практическое		
	применение электролиза.		
6	Химическая кинетика и её основной закон. Обратимые и необратимые реакции.		
	В результате лабораторных работ, у студентов появились компетенции по вопросам:		
	Элементы аналитической химии -Основные понятия аналитической химииКлассификация и возможности методов анализаХимические методы анализаФизико-химические методы анализа.		
	-Практическое применение аналитической химии в производственных условиях		
7	OBP		
	В результате лабораторнойц работы студенты узнают:		
	-направление OBP		
	-понятие окисление		
	-понятие восстановление		

№ п/п	Наименование лабораторных работ / краткое содержание	
8	Гальванические элементы	
	В результате лабораторнойц работы студенты узнают:	
	- что такое ГЭ;	
	- что такое электрохимические процессы	
	- устройство ГЭ;	
	- добыча электролитов	
9	Коррозиия металлов Ч.1	
	В результате лабораторнойц работы студенты узнают:	
	- процессы протекания коррозии	
10	Коррозиия металлов Ч.2	
	Коррозиия металлов	
	В результате лабораторнойц работы студенты узнают:	
	-защита от коррозии	

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Работа с лекционным материалом
2	Подготовка к лабораторным занятиям
3	Изучение литературы
4	Подготовка к промежуточной аттестации.
5	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Павлова, Е. И. Экология транспорта: учебник и	https://urait.ru/bcode/560368
	практикум для вузов / Е. И. Павлова, В. К. Новиков. —	
	7-е изд., перераб. и доп. — Москва : Издательство	
	Юрайт, 2025. — 416 с. — (Высшее образование). —	
	ISBN 978-5-534-16734-4.	
2	Экология : учебник и практикум для вузов / под	https://urait.ru/bcode/560577
	редакцией О. Е. Кондратьевой. — Москва:	
	Издательство Юрайт, 2025. — 283 с. — (Высшее	
	образование). — ISBN 978-5-534-00769-5.	
3	Росин, И. В. Химия: учебник и практикум для вузов /	https://urait.ru/bcode/580188
	И. В. Росин, Л. Д. Томина, С. Н. Соловьев. — Москва :	
	Издательство Юрайт, 2025. — 328 с. — (Высшее	
	образование). — ISBN 978-5-534-15973-8.	

4	Карнаух, Н. Н. Охрана труда: учебник для вузов / Н. Н.	https://urait.ru/bcode/559672
	Карнаух. — 2-е изд., перераб. и доп. — Москва:	
	Издательство Юрайт, 2025. — 343 с. — (Высшее	
	образование). — ISBN 978-5-534-15940-0.	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/).

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru).

Образовательная платформа «Юрайт» (https://urait.ru/).

Общие информационные, справочные и поисковые системы «Консультант Плюс»(https://consultantplus.helpline.ru/), «Гарант»(https://garant-pr.ru/).

Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/).

- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).
 - 1. Microsoft Internet Explorer (или другой браузер);
 - 2. Операционная система Microsoft Windows;
 - 3. Microsoft Office;
- 4. При проведении занятий с применением электронного обучения и дистанционных образовательных технологий, могут применяться следующие средства коммуникаций: ЭИОС РУТ(МИИТ), Microsoft Teams
- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования

9. Форма промежуточной аттестации:

Зачет в 3 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, к.н. кафедры «Химия и инженерная экология»

Ю.К. Боландова

Согласовано:

Заведующий кафедрой МиТ

А.А. Пискунов

Заведующий кафедрой ХиИЭ

Ф.И. Сухов

Председатель учебно-методической

комиссии

М.Ф. Гуськова