МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности
23.05.06 Строительство железных дорог, мостов и транспортных тоннелей, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Химия

Специальность: 23.05.06 Строительство железных дорог,

мостов и транспортных тоннелей

Специализация: Цифровое проектирование, строительство и

эксплуатация инфраструктуры высокоскоростных железнодорожных

магистралей

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ) ID подписи: 41799

Подписал: заведующий кафедрой Сухов Филипп Игоревич Дата: 17.11.2025

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины "Химия" являются:

- 1. Сформировать у студентов, теоретический фундамент для дальнейшего изучения химических и естественных наук, способствовать приобретению студентами знаний по основным вопросам общей и неорганической химии;
- 2. Развить творческое мышление и научное мировоззрение, раскрыть методологию химической науки.
- 3. Показать связь химии с жизнью современного общества и её роль в решении экологических проблем.

Задачи:

Главной обеспечение задачей учебной дисциплины является теоретической подготовкой ПО химии инженера железнодорожного транспорта, которая позволит ему быстрее и качественнее усваивать прикладные разделы химии, ориентироваться частных вопросах, возникающих при освоении новой техники и в строительстве. В ходе обучения дисциплине необходимо добиться освоения студентами теоретических основ химии, без которых невозможно понимание свойств и превращений химических веществ, а также химии элементов и их соединений, которые могут быть использованы как.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ОПК-1 - Способен решать инженерные задачи в профессиональной деятельности с использованием методов естественных наук, математического анализа и моделирования.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

Основные понятия и законы химии, строение атомов и молекул, основные квантово-механические представления об образовании химических связей, основные классы неорганических соединений, номенклатуру неорганических соединений, физико-химические

методы исследования веществ, периодический закон, термодинамику и кинетику химических процессов, свойства растворов, теорию

электролитической диссоциации, окислительно-восстановительные реакции

Уметь:

использовать основные понятия и законы в решении химических задач, показывать принципы, лежащие в основе классификации соединений и химических реакций, ознакомить с термодинамикой и кинетикой химических процессов, производить расчёты по приготовлению растворов.

Владеть:

навыками по обеспечению химической и экологической безопасности.

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип мусбуну соматуй	Количество часов	
Тип учебных занятий		Семестр №4
Контактная работа при проведении учебных занятий (всего):	50	50
В том числе:		
Занятия лекционного типа	34	34
Занятия семинарского типа	16	16

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 58 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.

4. Содержание дисциплины (модуля).

4.1. Занятия лекционного типа.

№				
п/п	Тематика лекционных занятий / краткое содержание			
1	Химия как наука			
	Рассматриваемые вопросы:			
	- Планируемые результаты			
	- понимать строение веществ, теоретические основы			
2	Атом			
	Рассматриваемые вопросы:			
	Энергетика			
	химических процессов			
	- Химическая термодинамика.			
	- Первый закон термодинамики.			
	- Энтальпия, ее физический смысл			
	- Второй закон термодинамики.			
	- Энтропия. Свободная энергия Гиббса			
	-Атом как мельчайшая частица химического элемента. Электронная структура			
3	Периодический закон и периодическая система элементов Д.И. Менделеева			
	Рассматриваемые вопросы:			
	- Периодический закон и периодическая система элементов Д.И. Менделеева			
4	Химическая связь. Метод молекулярных орбиталей.			
	Рассматривваемые вопросы:			
	-Химическая связь.			
	-Метод молекулярных орбиталей.			
5	5 Химические системы и их термодинамическая характеристика. Химические системы и их термодинамическая характеристика.			
	Рассматриваемые вопросы:			
	- Химические системы и их термодинамическая характеристика Кинетика химических			
	реакций.			
	-Химическое равновесие			
	- Скорость химической реакции.			
	- Закон действующих масс.			
	- Энергия активации.			
	- Зависимость скорости химической реакции от температуры (правило Вант-Гоффа, уравнение			
	Аррениуса).			
6	Элементы аналитической химии			
	Рассматриваемые вопросы:			
	-Элементы аналитической химии			
	- Основные понятия аналитической химии.			
	- Классификация и возможности методов анализа.			
	- Химические методы анализа Физико-химические методы анализа.			
	- Физико-химические методы анализа Практическое применение аналитической химии в производственных условиях.			
7	Уимия элементов			
/				
	Рассматриваемые вопросы:			
	- Водород -общие сведения. Изотопы водорода. Химические свойства (с примерами химических реакций).			
	реакции) Перспективные источники энергии на основе водорода и его изотопов.			
	перенективные него шики эпертии на основе водорода и его изотонов.			

№ п/п	Тематика лекционных занятий / краткое содержание
	- Взрывоопасность Водорода. Гидриды.
8	Щелочные металлы.
	Рассматриваемые вопросы:
	- Закономерности физических свойств в группе (1 группа).
	- Химические свойства щелочных металлов.
	- Получение щелочных металлов. Нахождение в природе.
	- Применение щелочных металлов. Источники энергии из щелочных металлов.

4.2. Занятия семинарского типа.

Лабораторные работы

No				
п/п	Наименование лабораторных работ / краткое содержание			
1	СПОСОБЫ ВЫРАЖЕНИЯ КОНЦЕНТРАЦИИ РАСТВОРОВ. ОПРЕДЕЛЕНИЕ			
	КОНЦЕНТРАЦИИ СОЛЯНОЙ КИСЛОТЫ			
	В результате выполнения лабораторной работы студенты узнают:			
	- какие существуют способы выражения концентраций			
	- метод титрования			
2	ОПРЕДЕЛЕНИЕ ВРЕМЕННОЙ ЖЕСТКОСТИ ВОДЫ			
	В результате выполнения практической работы студенты узнают что такое жесткость воды, способы			
	устранения различной жесткости, ГОСТы в области контроля качества различных вод и содержания			
	общего содержания металлов в воде			
3	СКОРОСТЬ ХИМИЧЕСКИХ РЕАКЦИЙ. ХИМИЧЕСКОЕ РАВНОВЕСИЕ			
	В результате выполнения лабораторной работы студенты узнают:			
	- что такое скорость химических реакций			
	- момент химического равновесия			
	- 3ДМ			
	- Принцип Ле-Шателье			
	 понятие диссоциации и ассоциации факторы влияющие на скорость реакции 			
4	ГИДРОЛИЗ СОЛЕЙ			
	В результате выполнения практической работы студенты ознакомятся с:			
	- понятие гидролиз			
	- СОЛИ			
	- гидролиз солей			
	- рН среды			
5	ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ ПРОЦЕССЫ			
	В результате выполнения практической работы студенты узнают что такое ОВР реакции, что такое			
	окисление, восстановление, процсессы протекающие при окислении и восстановлении			
6	ЭЛЕКТРОХИМИЧЕСКИЕ ПРОЦЕССЫ. ГАЛЬВАНИЧЕСКИЙ ЭЛЕМЕНТ			
	В результате выполнения практической работы студенты узнают что такое электрохимические			
	процессы, что такое гальванический элемент, ЭДС, стандартный потенциал, потенциалы, расчет ЭДС			
	гальванического элемента			
7	КОРРОЗИЯ МЕТАЛЛОВ			
	В результате выполнения практической работы студенты узнают что такое процессы окисления на			
	металлах, процесс коррозии металлов.			
8	СПОСОБЫ ЗАЩИТЫ ОТ КОРРОЗИИ			
	В результате выполнения практической работы студенты узнают как защитить металлы от коррозии,			

№ п/п	Наименование лабораторных работ / краткое содержание
	какие способы защиты самые продуктивные. Процессы проходящие на металлах при различных способах защиты от коррозии.

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Изучение дополнительной литературы.
2	Подготовка к лабораторным работам
3	Подготовка к промежуточной аттестации.
4	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	О. Е. Кондратьева. Экология: учебник и практикум для среднего профессионального образования; — Москва: Издательство Юрайт, 2023. — 283 с. — ISBN 978-5-534-01077-0.	https://urait.ru/book/ekologiya- 513189
2	Павлова Е. И., Новиков В. К. Общая экология : учебник и практикум для вузов — Москва : Издательство Юрайт, 2023. — 190 с. — (Высшее образование). — ISBN 978-5-9916-9777-4.	https://urait.ru/book/obschaya-ekologiya-513545
3	Павлова Е. И., Новиков В. К. Экология транспорта: учебник и практикум для вузов — 6-е изд., перераб. и доп. — Москва: Издательство Юрайт, 2023. — 418 с. — (Высшее образование). — ISBN 978-5-534-12793-5.	https://urait.ru/book/ekologiya- transporta-511072
4	Н. Н. Митина, Б. М. Малашенков. Экология: учебник и практикум для вузов — 2-е изд., перераб. и доп. — Москва: Издательство Юрайт, 2024. — 448 с. — (Высшее образование). — ISBN 978-5-534-18400-6.	https://urait.ru/book/ekologiya- 534972

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Информационно-справочные и поисковые системы: Internet Explorer, Yandex, Rambler, Mail, Opera

1. http://library.miit.ru/ - электронно-библиотечная система Научно-технической библиотеки МИИТ.

- 2. http://rzd.ru/ сайт ОАО «РЖД».
- 3. http://elibrary.ru/ научно-электронная библиотека
- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Office 365

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Имеется специализированная лаборатория лекционная аудитория. Лабораторное

оборудование и химическая посуда. Ноутбук. Мультимедийный проектор. Графопроектор.

Библиотечный фонд.

9. Форма промежуточной аттестации:

Зачет в 4 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, к.н. кафедры «Химия и инженерная экология»

Ю.К. Боландова

Согласовано:

Директор О.Н. Покусаев

Заведующий кафедрой ХиИЭ Ф.И. Сухов

Председатель учебно-методической

комиссии Д.В. Паринов