МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 26.03.03 Водные пути, порты и гидротехнические сооружения,

утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Цифровое прототипирование перегрузочного оборудования портов и терминалов

Направление подготовки: 26.03.03 Водные пути, порты и

гидротехнические сооружения

Направленность (профиль): Проектирование портов и терминалов

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 1054812

Подписал: заведующий кафедрой Сахненко Маргарита

Александровна

Дата: 11.04.2025

1. Общие сведения о дисциплине (модуле).

Цель дисциплины формирование компетенции в области цифрового прототипирования и компьютерного изготовления. Целью осовения дисциплины является получение компетенций в области прототипирования с применением цифровых технологий. Задачи дисциплины связаны с изучением способов и методов цифрового прототипирования технических средств и оборудования портов, преобретение навыков в применении программных комплексов позволяющих осуществлять цифровое прототипирование.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ПК-6** Способен к анализу и разработке проектной и эксплуатационной нормативно-технической документации портов;
- **ПК-8** Способен к разработке и внедрению средств, обеспечивающих цифровизацию технологических процессов портов.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

основные проектировочные пакеты общемашиностроительного профиля; законы и методы накопления, передачи и обработки информации с помощью компьютера; области применения информационных технологий и перспективы их развития в условиях перехода к информационному обществу; базовые информационные процессы, структуру, модели, методы и средства прикладных информационных технологий; методику создания, проектирования и сопровождения систем на базе информационных технологий; 3Д печать

Уметь:

Использовать 3Д печать, использовать математические методы в технических приложениях; использовать возможности вычислительной техники и программного обеспечения; применять информационные технологии при решении функциональных задач в различных предметных областях, а также при разработке и проектировании проектов судов и их оборудования

Владеть:

средствами компьютерной графики (ввод, вывод, отображение, преобразование и редактирование графических объектов на ПК) и компьютерного изготовления (3Д печать); основными методами работы на ПК с прикладными программными средствами; навыками поиска, подготовки и ввода информации, компьютерного производства; навыками, связанными с конкретной областью специальной подготовки.

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 9 з.е. (324 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

	Количество часов		
Тип учебных занятий	Всего	Семестр	
	BCCIO	№ 7	№8
Контактная работа при проведении учебных занятий (всего):	152	64	88
В том числе:			
Занятия лекционного типа	42	16	26
Занятия семинарского типа	110	48	62

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 172 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

No		
п/п	Тематика лекционных занятий / краткое содержание	
1	Введение в программирование обработки	
1	Рассматриваемые вопросы:	
	Основы числового программного управления	
	Основы числового программного управления Основы металлообработки	
	Введение в программирование обработки	
	Введение в программирование обработки	
2	Управляющие программы	
_	Рассматриваемые вопросы:	
	Основы эффективного программирования	
	Примеры управляющих программ	
	CAD/CAM	
3	системы координат и структура управления программ	
	Рассматриваемые вопросы:	
	Станочная система координат	
	Структура управляющей программы	
4	Автоматизация управления	
	Рассматриваемые вопросы:	
	Базовые G-коды	
	Базовые М-коды	
	Постоянные циклы станка с ЧПУ	
	Автоматическая коррекция радиуса инструмента	
5	Программирование	
	рассматриваемые вопросы:	
	Система трехмерного твердотельного моделирования компас-3d	
	Основы работы в CAM-системе Esprit	
	Управление станком с ЧПУ	
	Справочник кодов и специальных символов программирования	
	Полезные программы	
6	Использование цифрового прототипа для испытаний	
	Рассматриваемые вопросы:	
	Цифровой эксперимент	
	Виды испытаний техники	
	Структура испытаний Подготовка прототипа и обработка результатов	
7	Использование цифрового прототипа в прогнозировании	
'		
	Рассматриваемые вопросы: Анализ и подготовка статистических данных	
	Статистические модели	
Статистические модели		
	Прогонозирование при заданных условиях и анализ результатов	
8	Оптимизация работы перегрузочного оборудования на основе цифрового	
	прототипирования	
	Рассматриваемые вопросы:	
	Рассматриваемые вопросы: Методы оптимизации производительности оборудования	
	Анализ эффективности различных режимов работы	
	Автоматизация процессов перегрузки с использованием цифровых моделей	
	Оценка экономической эффективности внедрения оптимизированных решений	
<u> </u>	T T T T	

4.2. Занятия семинарского типа.

Лабораторные работы

$N_{\underline{0}}$			
п/п	Наименование лабораторных работ / краткое содержание		
1	Алгоритма нахождения нулевой точки в центре отверстия		
1	В результате работы на занятиях студент получает навыки: Применения Алгоритма нахожде		
	нулевой точки в центре отверстия:		
	Нулсьой точки в центре отверстия. Измерение инструмента и детали;		
	G-коды		
	Адреса/слова данных		
	М-коды		
	Специальные символы в УП		
	Мониторинг ЧПУ		
	Контроль в режиме реального времени		
	Формирование отчетов и графиков		
	Ускорение работы цеховых служб		
	Внедрение на предприятии		
	Редактор УП Cimco Edit 7		
	Техтран®		
2	Станковая обработка металла		
	В результате выполнения лабораторной работы студент получает навык: Фрезерной обработки		
	Токарной обработки		
	Токарнои обработки Токарно-фрезерной обработки		
	Многошпиндельного сверления		
3	Обработка металла		
3	•		
	В результате выполнения лабораторной работы студент получает навык:		
	Раскроя листового материала Листовой штамповки		
	Электроэрозионной обработки		
4			
4	Контроль и управление		
	В результате выполнения работы студент получает навык:		
	Контроля управляющих программ		
	Изучает процесс разработки и создания технологических карт		
	Стандартный цикл сверления и цикл сверления с выдержкой		
	Относительные координаты в постоянном цикле		
5	программы срепления		
)	программы сверления		
	В результате выполнения работы студент получает навык программирования: Циклы прерывистого сверления		
	циклы прерывистого сверления Циклы нарезания резьбы		
	циклы нарезания резьоы Циклы растачивания		
	циклы растачивания Примеры программ на сверление отверстий при помощи постоянных циклов		
	Основные принципы		
	Основные принципы Использование автоматической коррекции на радиус инструмента		
	Активация, подвод и отвод		
6			
6	Подпрограммы		
	В результате рабоыт на занятиях студент изучает:		
	Подпрограммы:		
	Работа с осью вращения (4-ой координатой)		
	Параметрическое программирование		

No		
п/п	Наименование лабораторных работ / краткое содержание	
11/11	П	
	Программирование в ISO	
	Пример. Контурная обработка с коррекцией на радиус инструмента	
	Пример. Контурная обработка с коррекцией на радиус инструмента	
	Пример. Фрезерование прямоугольного кармана	
	Пример. Фрезерование круглого кармана	
Программирование для Heidenhain		
	Пример. Контурная обработка с коррекцией на радиус инструмента	
	Пример. Сверление 7 отверстий диаметром 3 мм и глубиной 6,5 мм с помощью постоянного цикла	
7	Методы программирования	
	В результате работы студент получает навыки и изучает:	
	Методы программирования	
	Что такое CAD и CAM?	
	Общая схема работы с CAD/CAM-системой	
	Виды моделирования	
	Уровни САМ-системы	
8	Программирование. Основы	
	В результате работы на занятиях студент изучает и получает навык в области:	
	Геометрия и траектория	
	Алгоритм работы в САМ-системе	
	Выбор геометрии	
	Выбор стратегии и инструмента, назначение параметров обработки	
	Плоская обработка	
	Объемная обработка	
	Бэкплот и верификация	
	Постпроцессирование	
	Передача УП на станок с ЧПУ	
	Ассоциативность	
9	Моделирование деталей	
	В результате работы на занятиях студент получает навыки программирования:	
	Пятикоординатное фрезерование и 30-коррекция	
	Высокоскоростная обработка (ВСО)	
	Требования к современной САМ-системе	
	Классические твердотельные операции	
	Твердотельное моделирование	
	Поверхностное моделирование	
	Моделирование деталей из листового материала	
	Экспорт геометрии	
	Системные требования	
	Активация лицензии и запуск программы	
	Интерфейс программы	
	Порядок работы в программе	
	Создание операций фрезерной обработки	
	Органы управления	
	Основные режимы работы	
	Индикация системы координат	
	Установление рабочей системы координат	
	Алгоритм нахождения нулевой точки детали по оси Z	
	Алгоритм нахождения нулевой точки детали по осям X и Y	
10	Подготовка модели к расчёту	
	Навыки выбора и задания характеристиик модели и граничных условий	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

№ п/п	Наименование лабораторных работ / краткое содержание
11	Расчёт модели
	Навыки контроля процесса расчёта модели, корректировки параметров расчёта в зависиомости от
	промежуточных результатов
12	Прогнозирование на основе прототипа
	Навыки подготовки массива даннык к использованию в статистическом моделировании,
	программирование модели, получение результатов прогнозирования и их анализ

Практические занятия

	Практические занятия	
№ п/п	Тематика практических занятий/краткое содержание	
1	Автоматическое управление	
	В результате выполнения практической работы студент изучает:	
	Автоматическое управление	
	Особенности устройства и конструкции фрезерного станка с ЧПУ	
	Функциональные составляющие (подсистемы) ЧПУ	
2	Управление подсистем	
	В результате выполнения работы студент получает навык: управления подсистем.	
	Подсистема управления	
	Подсистема приводов. Высокоточные ходовые винты. Двигатели	
	Подсистема обратной связи. Датчики, используемые для определения	
	положения. Датчики состояния исполнительных органов.	
	Функционирование системы ЧПУ	
3	Программирование обработки металла	
	В результатевыполнения работы студент получает навык:	
	Языкового программирования обработки:	
	Процесс фрезерования,	
	Режущий инструмент	
	Вспомогательный инструмент	
	Основные определения и формулы	
	Рекомендации по фрезерованию	
	Прямоугольная система координат	
4	Управляющие программы	
	В результате работы на практическом занятии студент получает навык:	
	Написания простой управляющей программы	
	Создания УП на персональном компьютере	
	Передачи управляющей программы на станок	
	Проверки управляющей программы на станке	
	Тестовые режимы станка с ЧПУ	
	Последовательность полной проверки УП	
	Советы по технике безопасности при эксплуатации станков с ЧПУ	
5	Исходное программирование	
	В результате выполнения работы студент получает навык: Формирования и программирования	
	параметров:	
	Нулевая точка станка и направления перемещений	
	Нулевая точка программы и рабочая система координат	
	Компенсация длины инструмента	
	Абсолютные и относительные координаты	
	Комментарии в УП и карта наладки	
	G- и M-коды	
	Структура программы	

№	Тематика практических занятий/краткое содержание		
Π/Π	темитика практи теских запитии краткое содержание		
	Слово данных, адрес и число		
	Модальные и немодальные коды		
	Формат программы		
	Строка безопасности		
6	Формирование управляющей программы		
	В результате выполнения работы студент получает навык: Формирования УП:		
	Важность форматирования УП		
	Ускоренное перемещение- G00		
	Линейная интерполяция - G01		
	Круговая интерполяция - G02 и G03		
	Дуга с І, Ј, К		
	Дуга с R		
	Использование G02 и G03		
	Останов выполнения управляющей программы - М00 и М01		
	Управление вращением шпинделя - МОЗ, М04, М05		
	Управление подачей СОЖ- М07, М08, М09		
	Автоматическая смена инструмента- М06		
	Завершение программы - МЗО и М02		
7	Моделирование и симуляция работы перегрузочного оборудования в цифровой		
	среде		
	В результате выполнения работы студент получает навык:		
	Основы работы с CAD/CAM-системами для проектирования перегрузочных механизмов		
	Настройка параметров виртуальной среды для симуляции работы оборудования		
	Анализ кинематики и динамики грузоподъемных устройств (кранов, конвейеров, погрузчиков)		
	Выявление потенциальных коллизий и ошибок в работе оборудования до физического изготовления		
	Оптимизация траекторий перемещения грузов для минимизации времени операций		

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы	
1	Изучение материала занятий. Изучение основной литературы. Изучение	
	дополнительной литературы	
2	Подготовка к промежуточной аттестации	
3	Подготовка к промежуточной аттестации.	
4	Подготовка к текущему контролю.	

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Моделирование и виртуальное	URL:
	прототипирование: Учебное пособие /	https://znanium.com/catalog/product/555214
	Косенко И.И., Кузнецова Л.В., Николаев	(дата обращения: 14.02.2024). – Режим
	А.В Москва :Альфа-М, ИНФРА-М	доступа: по подписке.

	Издательский Дом, 2016 176 с.	
	(Технологический сервис) ISBN 978-5-	
	98281-280-3 Текст : электронный.	
2	Степанов А.Л. Перегрузочное	Библиотека АВТ – 40 шт.(печатные)
	оборудование транспортных терминалов.	
	Учебник для вузов.	
3	Леонов В.Е., Дмитриев В.И. Современные	Библиотека АВТ – 15 шт. (печатные)
	методы исследований и обработки	
	экспериментальных данных для	
	потребностей морского и внутреннего	
	водного транспорта. Монография	
	М.:МОРКНИГА, 2021336 с.	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Сайт учебного кабинета САПР www.lab-sapr.ru

Сайт крупнейшей системы САПР www.solidworks.ru

Форум CAD/CAM/CAE/PLM https://cccp3d.ru/

Журнал CAD/CAM/CAE http://www.cadcamcae.lv/

Образовательный портал по САПР https://cadcamtutorials.ru/articles/cnc5

Российская компания «СПРУТ-Технология» области автоматизации подготовки производства https://sprut.ru/company/press/articles/ SprutCAM-sredi-CAD/CAM/CAE-sistem-v-mashinostroenii

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Solid Works Система автоматизированного проектирования CAD/CAM/CAE

ПО 3Д-принтеров в комплекте с принтерами

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебная аудитория оснащенная копмьютерной техникой и демонстрационными материалами в том числе:

3D принтер ANYCUBIC – 3 шт,

3D принтер Noble 1.0 - 1 шт,

электроинструмент ручной

9. Форма промежуточной аттестации:

Зачет в 7 семестре.

Экзамен в 8 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, к.н. кафедры «Водные пути, порты и портовое оборудование» Академии водного транспорта

А.Ю. Ганшкевич

Согласовано:

Заведующий кафедрой ВППиПО

М.А. Сахненко

Председатель учебно-методической

комиссии

А.А. Гузенко