МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности
23.05.06 Строительство железных дорог, мостов и транспортных тоннелей, утвержденной первым проректором РУТ (МИИТ)

Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Цифровые двойники ВСМ

Специальность: 23.05.06 Строительство железных дорог,

мостов и транспортных тоннелей

Специализация: Цифровое проектирование, строительство и

эксплуатация инфраструктуры высокоскоростных железнодорожных

магистралей

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 392160

Подписал: руководитель образовательной программы

Баяндурова Александра Александровна

Дата: 26.04.2025

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины (модуля) являются:

- изучение студентами теории и практики организации управления техническим состоянием высокоскоростных железнодорожных магистралей на основе применения цифровых двойников

Задачами дисциплины (модуля) являются:

- овладение методологией создания цифровых двойников объектов инфраструктуры высокоскоростных железнодорожных магистралей, как применения информационного моделирования основы методов при строительстве эксплуатации высокоскоростных проектировании И железнодорожных магистралей;
- формирование навыков применения технологии цифровых двойников объектов инфраструктуры высокоскоростных железнодорожных магистралей
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ПК-12 - Способен разрабатывать проекты BCM с использованием цифровых инструментов проектирования, в том числе создавать цифровые двойники объектов инфраструктуры.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- нормативно- технические основы применения цифровых двойников;
- технологические основы применения технологии цифровых двойников объектов инфраструктуры BCM на этапе проектирования;
- технологические основы применения технологии цифровых двойников объектов инфраструктуры BCM на этапе строительства;
- технологические основы применения технологии цифровых двойников объектов инфраструктуры BCM на этапе эксплуатации

Уметь:

- организовывать и проводить создание цифровых двойников железнодорожной инфраструктуры BCM;
- проводить работы по информационному моделированию на основе цифровых двойников объектов железнодорожной инфраструктуры при строительстве высокоскоростной железнодорожной магистрали;

- проводить работы по информационному моделированию на основе цифровых двойников объектов железнодорожной инфраструктуры при эксплуатации высокоскоростной железнодорожной магистрали

Владеть:

- навыками управления техническим состоянием инфраструктуры высокоскоростной железнодорожной магистрали на основе применения цифровых двойников объектов железнодорожной инфраструктуры на жизненном цикле ВСМ
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №7
Контактная работа при проведении учебных занятий (всего):	48	48
В том числе:		
Занятия лекционного типа	32	32
Занятия семинарского типа	16	16

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 60 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.

4. Содержание дисциплины (модуля).

4.1. Занятия лекционного типа.

№		
п/п	Тематика лекционных занятий / краткое содержание	
1	Введение в технологию цифровых двойников.	
	Цифровые двойники и области применения. История развития. Технологии цифровой трансформации.	
2	Цифровые двойники на железнодорожном транспорте.	
	Нормативно-техническая база применения цифровых двойников инфраструктурных объектов ОАО «РЖД».	
3	Цифровые двойники на железнодорожном транспорте.	
	Применение цифровых двойников на железнодорожном транспорте. Цифровые двойники	
	инфраструктурных объектов. Цифровые двойники технических систем. Цифровые двойники транспортных средств.	
4	Цифровые двойники и технология информационного моделирования.	
	Технология информационного моделирования. Архитектура моделей. Уровни детализации LOD.	
5	Применение технологии информационного моделирования.	
	Мировой опыт применения цифровых двойников и технологий информационного моделирования при	
	реализации жизненного цикла инфраструктурных объектов.	
6	Программное обеспечение цифровых двойников.	
	Архитектура программных решений цифровых двойников. Интеграция с информационными	
	системами.	
7	Цифровые технологии при реализации проекта ВСМ.	
	Особенности проекта ВСМ в аспекте цифровизации. Текущий статус проекта. Управление жизненным	
	циклом инфраструктуры ВСМ на основе цифровых двойников.	
8	Цифровой двойник инфраструктуры ВСМ.	
	Архитектура цифрового двойника инфраструктуры ВСМ. Состав объектов цифрового двойника ВСМ.	
9	Информационная подоснова цифрового двойника ВСМ.	
	Геоинформационная модель данных. Система координат.	
10	Геоинформационная подоснова цифрового двойника ВСМ.	
	Цифровая модель местности. Цифровая модель ситуации. Цифровая модель инженерных	
	коммуникаций. Цифровая модель геологического строения. Цифровая модель	
1.1	гидрометеорологических условий.	
11	Цифровой двойник инфраструктуры ВСМ.	
10	Земляное полотно на участках безбалластного верхнего строения пути. Параметры модели.	
12	Цифровой двойник инфраструктуры ВСМ.	
	Верхнее строение пути на участках безбалластного верхнего строения пути. Параметры модели.	
12	Структура.	
13	Цифровой двойник инфраструктуры BCM. Искусственные сооружения. Параметры модели. Структура.	
14	Цифровой двойник инфраструктуры BCM.	
14	Объекты электроснабжения. Контактная сеть КС400. Параметры модели. Структура.	
15	Использование цифрового двойника при строительстве ВСМ.	
13	Технология Machine Control. Методы управления строительством и способы контроля.	
16	Использование цифрового двойника при эксплуатации ВСМ.	
16	Диагностика и мониторинг железнодорожной инфраструктуры ВСМ на основе цифрового двойника.	
	Методы предиктивной аналитики для управления техническим состоянием инфраструктуры ВСМ.	
	изстоды предиктивной аналитики для управления техническим состоянием инфраструктуры ВСМ.	

4.2. Занятия семинарского типа.

Лабораторные работы

№ п/п	Наименование лабораторных работ / краткое содержание		
1	Цифровые двойники на железнодорожном транспорте.		
	Формирование координатной основы цифрового двойника ВСМ.		
2	Формирование координатной основы цифрового двойника ВСМ.		
	Цифровая модель местности.		
3	Создание геоинформационной подосновы цифрового двойника ВСМ.		
	Цифровая модель ситуации.		
4	Создание геоинформационной подосновы цифрового двойника ВСМ.		
	Цифровая модель геологического строения.		
5	Создание цифрового двойника ВСМ.		
	Цифровая модель земляного полотна на участках безбалластного верхнего строения пути.		
6	Создание цифрового двойника ВСМ.		
	Цифровая модель безбалластного верхнего строения пути.		
7	Создание цифрового двойника ВСМ.		
	Цифровая модель железнодорожного моста ВСМ.		
8	Создание цифрового двойника ВСМ.		
	Цифровая модель контактной сети КС 400 BCM.		

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Изучение дополнительной литературы.
2	Подготовка к лабораторным работам.
3	Подготовка к промежуточной аттестации.
4	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Матвеев, С.И. Геоинформационные системы и технологии на железнодорожном транспорте: учебное пособие / С. И. Матвеев, В. Р. Коугия, В. Я. Цветков. — Москва: Издательство УМК МПС России, 2002. — 288 с. — 5-89035-071-4	Текст: электронный // УМЦ ЖДТ: электронная библиотека. — URL: https://umczdt.ru/read/2622/?page=1/. — Режим доступа: по подписке.
2	Малыгин, Е.А. Технические средства и технологии обеспечения безопасности на железнодорожном транспорте: учебное пособие / Е. А. Малыгин. — Екатеринбург: УрГУПС,	Текст: электронный // УМЦ ЖДТ: электронная библиотека. — URL: https://umczdt.ru/read/262077/?page=1/. — Режим доступа: по подписке.

	2021. — 448 c. — 978-5-94614-496-4	
3	Шнайдер, В. А. Информационное	Текст : электронный // Лань :
	моделирование в транспортном строительстве :	электронно-библиотечная система. —
	учебное пособие / В. А. Шнайдер. — Омск:	URL:
	СибАДИ, 2020. — 73 с.	https://e.lanbook.com/book/163745
4	Пионкевич, В. А. Информационное	Текст : электронный // Лань :
	моделирование объектов. Информационное	электронно-библиотечная система. —
	моделирование в сфере промышленного и	URL:
	гражданского строительства: учебное пособие /	https://e.lanbook.com/book/497912
	В. А. Пионкевич, И. А. Пузанов, Д. А.	
	Середкин. — Иркутск : ИРНИТУ, 2023. — 90 с.	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/).

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru).

Электронный фонд правовых и нормативных документов (https://docs.cntd.ru/).

Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/).

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/).

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Internet Explorer (или другой браузер).

Операционная система Microsoft Windows.

Microsoft Office.

ГИС Панорама.

QGIS.

ТИМ CREDO, (модули: ДАТ; ГНСС; ИЗЫСКАНИЯ; 3D СКАН).

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

Специальное образовательное пространство Научно-технологическая и экспериментальная лаборатория "Информационное моделирование

инфраструктуры ВСМ".

9. Форма промежуточной аттестации:

Зачет в 7 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, к.н. кафедры «Геодезия, геоинформатика и навигация»

Д.С. Манойло

Согласовано:

Директор О.Н. Покусаев

Руководитель образовательной

программы А.А. Баяндурова

Председатель учебно-методической

д.В. Паринов