МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности 23.05.06 Строительство железных дорог, мостов и транспортных тоннелей, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Цифровые модели пути и объектов инфраструктуры

23.05.06 Строительство Специальность: железных дорог,

мостов и транспортных тоннелей

Специализация: Геоинформационные технологии при

> проектировании, строительстве И

эксплуатации транспортной инфраструктуры

Форма обучения: Очная

> Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 72156

Подписал: заведующий кафедрой Розенберг Игорь Наумович

Дата: 29.09.2023

1. Общие сведения о дисциплине (модуле).

Цели дисциплины Цифровые модели пути и объектов инфраструктуры:

Ознакомление студентов с основными понятиями, определениями и принципами работы с цифровыми моделями пути и объектов инфраструктуры.

Обучение студентов технологиям и методам создания цифровых моделей рельефа, железнодорожного пути и их интеграции в единое информационное пространство железнодорожного предприятия.

Формирование у студентов навыков разработки цифровых моделей железнодорожного полотна, путевого хозяйства и их применения в процессе управления инфраструктурой железнодорожного транспорта.

Знакомство студентов с технологиями создания трехмерных моделей объектов инфраструктуры с применением лазерного сканирования, ВІМ-технологий и алгоритмов автоматического распознавания объектов.

Обучение студентов навыкам разработки баз данных для элементов железнодорожного пути и объектов инфраструктуры и их интеграции в информационные системы железнодорожного предприятия.

Изучение студентами методов оценки точности, надежности, экономической эффективности цифровых моделей пути и объектов инфраструктуры, навыков проведения мониторинга и управления цифровыми моделями.

Обучение анализу роли цифровых моделей в процессе повышения эффективности управления железнодорожным транспортом, определению перспектив их развития и возможности внедрения.

Формирование опыта разработки и создания систем управления инфраструктурой железнодорожного транспорта на основе цифровых моделей, оценке их экономической эффективности и внедрению на железнодорожном предприятии.

Задачи дисциплины:

Применение методов оценки точности, надежности, экономической эффективности цифровых моделей пути и объектов инфраструктуры, проведение мониторинга и управление цифровыми моделями.

Анализ роли цифровых моделей в процессе повышения эффективности управления железнодорожным транспортом, определение перспектив их развития и возможность внедрения.

Приобретение опыта разработки и создание систем управления инфраструктурой железнодорожного транспорта на основе цифровых моделей, оценка их экономической эффективности и внедрение на

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ПК-26** Способен создавать цифровые модели пути и объектов инфраструктуры на базе ВКС;
- **ПК-27** Способен выполнять проектирование строительства, реконструкции и ремонта железных дорог в едином координатно-временном пространстве ВКС.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

Основные понятия, определения и принципы работы с цифровыми моделями пути и объектов инфраструктуры.

Технологии и методы создания цифровых моделей рельефа и железнодорожного пути, а также их интеграция в единое информационное пространство.

Принципы разработки цифровых моделей железнодорожного полотна и путевого хозяйства, а также особенности их применения в управлении инфраструктурой.

Методики создания трехмерных моделей объектов инфраструктуры с помощью лазерного сканирования и ВІМ-технологий, а также алгоритмы автоматического распознавания объектов.

Подходы к разработке баз данных для элементов железнодорожного пути и объектов инфраструктуры, а также к интеграции цифровых моделей в существующие информационные системы.

Уметь:

Работать с основными понятиями, определениями и принципами создания цифровых моделей пути и объектов инфраструктуры.

Использовать различные технологии и методы для создания цифровых моделей рельефа, железнодорожного пути и интеграции их в единое информационное пространство.

Разрабатывать цифровые модели железнодорожного полотна, путевого хозяйства и применять их в управлении инфраструктурой железнодорожного транспорта.

Создавать трехмерные модели объектов инфраструктуры с использованием лазерного сканирования и ВІМ-технологий, а также применять алгоритмы автоматического распознавания объектов.

Разрабатывать базы данных для элементов железнодорожного пути и объектов инфраструктуры и интегрировать цифровые модели в существующие информационные системы железнодорожного предприятия.

Владеть:

Методами оценки точности, надежности, экономической эффективности цифровых моделей пути и объектов инфраструктуры, навыками проведения мониторинга и управления ими.

Навыками анализа роли цифровых моделей в процессе повышения эффективности управления железнодорожным транспортом, определения перспектив их развития и внедрения.

Опытом разработки и создания прототипов систем управления инфраструктурой на основе цифровых моделей, оценки их экономической эффективности и внедрения на железнодорожном предприятии.

Технологиями создания трехмерных моделей объектов инфраструктуры с применением лазерного сканирования и ВІМ-технологий и алгоритмами автоматического распознавания объектов

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 4 з.е. (144 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

		Количество	
Тип учебных занятий	часов		
	Всего	Сем.	
		№8	
Контактная работа при проведении учебных занятий (всего):	56	56	
В том числе:			
Занятия лекционного типа	28	28	
Занятия семинарского типа	28	28	

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 88 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.

4. Содержание дисциплины (модуля).

4.1. Занятия лекционного типа.

No	Томотуме намичения и запатуй / местиса со наружи			
Π/Π	Тематика лекционных занятий / краткое содержание			
1	Введение в цифровые модели пути и объектов инфраструктуры. Основные понятия и			
	определения			
2	Технологии создания цифровых моделей рельефа. Использование данных			
	дистанционного зондирования Земли			
3	Разработка цифровых моделей железнодорожного пути. Применение спутниковых			
	систем навигации и геодезических измерений			
4	Цифровые модели железнодорожного полотна. Учет геометрических параметров			
	пути и особенности их обработки			
5	Геоинформационные системы в создании цифровых моделей путевого хозяйства.			
	Методы и подходы			
6	Технологии лазерного сканирования в создании трехмерных моделей объектов			
	инфраструктуры			
7	Технологии лазерного сканирования в создании трехмерных моделей объектов			
	инфраструктуры			
8	Машинное обучение в создании алгоритмов автоматического распознавания			
	объектов железнодорожного транспорта			
9	Разработка базы данных для элементов железнодорожного пути и объектов			
	инфраструктуры в рамках цифровых моделей			
10	Интеграция цифровых моделей пути и объектов в информационное пространство			
	железнодорожного предприятия. Проблемы и решения			
11	Статистические методы оценки точности и надежности цифровых моделей пути и			
	объектов железнодорожной инфраструктуры			
12	Система мониторинга состояния железнодорожного пути на основе цифровых			

№ п/п	Тематика лекционных занятий / краткое содержание
	моделей: разработка и внедрение
13	Влияние цифровых моделей на эффективность управления железнодорожным
	транспортом: анализ и перспективы

4.2. Занятия семинарского типа.

Лабораторные работы

No	Наименование лабораторных работ / краткое содержание		
п/п			
1	Изучение основных понятий и определений цифровых моделей пути и объектов		
	инфраструктуры.		
2	Построение цифровой модели рельефа на основе данных дистанционного		
	зондирования Земли		
3	Создание цифровой модели железнодорожного пути с использованием данных		
	спутниковых систем навигации		
4	Разработка модели железнодорожного полотна с учетом геометрических параметров		
	пути		
5	Разработка методики создания цифровой модели путевого хозяйства с		
	использованием геоинформационных систем		
6	Создание трехмерной модели объектов инфраструктуры с использованием лазерного		
	сканирования		
7	Построение цифровых моделей инженерных сооружений на основе BIM-технологий		
8	Создание базы данных элементов железнодорожного пути и объектов		
	инфраструктуры для дальнейшего использования в цифровых моделях		
9	Интеграция цифровых моделей пути и объектов в единое информационное		
	пространство железнодорожного предприятия		
10	Оценка точности и надежности цифровых моделей пути и инфраструктуры на основе		
	статистических методов		
11	Разработка системы мониторинга состояния железнодорожного пути на основе		
	цифровых моделей		
12	Исследование влияния цифровых моделей на повышение эффективности управления		
	железнодорожным транспортом		
13	Создание прототипа системы управления инфраструктурой на основе цифровых		
	моделей пути и объектов		

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Работа с учебной литературой и интернет источниками
2	Подготовка к промежуточной аттестации.
3	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Технологии информационного моделирования А. В. Гинзбург, Л. А. Адамцевич, М. М. Железнов [и др.] Учебно-методическое издание Москва: МИСИ – МГСУ, 2022	Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/342596. — Режим доступа: для авториз. пользователей.
2	Информационное моделирование в транспортном строительстве В. А. Шнайдер Учебное пособие Омск: СибАДИ, 2020	Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/163745. — Режим доступа: для авториз. пользователей.
3	Проектирование индивидуального жилого дома в системе автоматизированного проектирования Autodesk Revit В. М. Уморина Учебное пособие Саранск: МГУ им. Н.П. Огарева, 2021	Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/311744. — Режим доступа: для авториз. пользователей.

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Научно-техническая библиотека РУТ (МИИТ): http://library.miit.ru Библиотека ГОСТов и нормативных документов: http://libgost.ru

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

При осуществлении образовательной деятельности используется следующее программное обеспечение:

- 1. Trimdle Real Works
- 2. CREDO 3D Ckah
- 3. Autodesk Civil 3D
- 4. Autodesk Navisworks
- 5. Robur Железные дороги

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Лабораторные работы проводятся В специально оборудованном компьютерном классе вычислительного центра. Для выполнения лабораторных работ необходимо следующее программно-аппаратное обеспечение:

Персональный компьютер для каждого студента с характеристиками не хуже: четырехядерный процессор с частотой не менее 3000, оперативная память 16 Гб, ПЗУ 500 Гб, дискретная видеокарта, монитор не менее 24";

Операционная система персонального компьютера: Windows 10 или 11. Проектор и экран для демонстрации учебного материала.

9. Форма промежуточной аттестации:

Экзамен в 8 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, к.н. кафедры «Геодезия, геоинформатика и навигация»

С.В. Духин

Согласовано:

Заведующий кафедрой ГГН

И.Н. Розенберг

Председатель учебно-методической

комиссии М.Ф. Гуськова