МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 23.03.01 Технология транспортных процессов, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Цифровые технологии

Направление подготовки: 23.03.01 Технология транспортных процессов

Направленность (профиль): Организация перевозок и управление на

железнодорожном транспорте

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5665

Подписал: заведующий кафедрой Нутович Вероника

Евгеньевна

Дата: 01.09.2025

1. Общие сведения о дисциплине (модуле).

Целью освоения учебной дисциплины «Цифровые технологии» является формирование у обучающихся знания о сквозных технологиях цифровой трансформации и их видах, прикладных примерах использования и развития навыков логического и системного мышления для решения поставленной инженерной задачи.

Задачами освоения учебной дисциплины «Цифровые технологии являются:

- формирование базовых знаний в областях цифровизации, интернета вещей, искусственного интеллекта, разработки программного обеспечения;
 - приобретение навыков по использованию современных инструментов.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-4** Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности;
- **ПК-13** Способен анализировать и применять цифровую информацию в профессиональной деятельности, использовать технические данные, показатели и результаты работы автоматизированных транспортных систем; возможности современных информационно-компьютерных и цифровых технологий при управлении перевозками в реальном режиме времени.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- основы сквозных технологий и их роль в цифровой трансформации бизнес-процессов;
 - нормативную базу цифровизации в Российской Федерации;
 - типовые методы управления трансформацией бизнес-процессов;
 - принципы работы современных информационных технологий.

Уметь:

- применять Agile практики для реализации современных цифровых проектов;
 - определять стек сквозных технологий для решения инженерных задач;
 - работать с облачными платформами и ресурсами.

Владеть:

- навыками разработки алгоритмов применяющих сквозные технологии для решения профессиональных задач;
- навыками проектирования и реализации программного обеспечения применяющего технологии искусственного интеллекта и предиктивной аналитики для решения профессиональных задач;
- навыками проектирования и реализации распределенных приложений с использованием облачных сервисов.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 5 з.е. (180 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №2
Контактная работа при проведении учебных занятий (всего):	32	32
В том числе:		
Занятия лекционного типа	16	16
Занятия семинарского типа	16	16

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 148 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).

4.1. Занятия лекционного типа.

No			
п/п	Тематика лекционных занятий / краткое содержание		
1	Информатизация и цифровизация		
	Рассматриваемые вопросы:		
	- понятие информатизации и цифровизации, основы, история и отличия.		
2	Цифровизация и экономика. Цифровое производство		
	Рассматриваемые вопросы:		
	- взаимосвязь цифровизации с экономикой;		
	- традиционные способы производства;		
	- способы производства в условиях цифровизации;		
	- индустрия 4.0;		
	- цифровой двойник;		
	- умные фабрики.		
3	Нормативная база цифровизации в России. Основные технологии цифровизации		
	Рассматриваемые вопросы:		
	- нормативная база регулирующая цифровую среду, кадровую политику в условиях цифровизации,		
	цифровые технологии, цифровое государственное управление и искусственный интеллект;		
	- перечень цифровых технологий, их роль и вклад в экономику.		
4	Генеративные модели искусственного интеллекта. Искусственный интеллект и		
	машинное обучениеИскусственный интеллект и машинное обучение.		
	Искусственный интеллект и машинное обучение		
	Рассматриваемые вопросы:		
	- модальности;		
	- большие языковые модели;		
	- реализации больших языковых моделей: LaMDA, GPT-4, LLaMA 2, Claude 2, Mistral 7B, Gemini,		
	Falcon 180B;		
	- модели генерации изображений;		
	- реализации моделей генерации изображений: DALL-E, Midjourney, Stable Diffusion; - различные модели для решения специфичных задач;		
	- определение искусственного интеллекта;		
	- алгоритмы обучения с учителем и без учителя;		
	- нейронные сети;		
	- распространенные фреймворки.		
5	Предиктивная аналитика и анализ данных		
	Рассматриваемые вопросы:		
	- основные определения и подходы в анализе данных;		
	- этика предсказания;		
	- описательная аналитика;		
	- диагностическая аналитика;		
	- предсказательная аналитика;		
	- предписывающая аналитика;		
	- распространенные инструменты фреймворки.		
6	Технологии смешанной реальности. Блокчейн		
	Рассматриваемые вопросы:		
	- основы технологий смешанной реальности;		
	- технологии дополненной реальности;		
	- технологии виртуальной реальности; - распространенные фреймворки и устройства;		
	- разработка приложений смешанной реальности;		
L	разрасотка приложении емешанной реальности,		

№ п/п	Тематика лекционных занятий / краткое содержание
	- основы технологий распределенных реестров;
	- децентрализация и блокчейн;
	- смарт-контракты;
	- криптовалюты;
	- информационная безопасность и блокчейн.
7	Технологии больших данных и инженерия данных. Промышленный интернет
	вещей
	Рассматриваемые вопросы:
	- основы инженерии данных;
	- развитие технологий хранения данных;
	- большие данные;
	- data-driven подходы;
	- пакетная и потоковая обработка данных;
	- распространенные инструменты и фреймворки хранения и обработки данных;
	- качество данных;
	- аналитические хранилища данных;
	- Data-as-service;
	- Карра и Lambda архитектуры;
	- история развития IoT;
	- архитектура IoT;
	- распространенные аппаратные и программные решения в области IoT;
	- протоколы коммуникации;
	- типовая архитектура IoT систем;
	- кейсы.
8	Прогнозы развития транспортной системы в условиях цифровизации
	Рассматриваемые вопросы:
	- локальные и глобальные вызовы для транспорта в условиях цифровизации;
	- стратегия развития транспорта до 2030 года;
	- кадровая политика на транспорте в условиях цифровизации.

4.2. Занятия семинарского типа.

Практические занятия

№ п/п	Тематика практических занятий/краткое содержание	
1	Гибкие методологии управления цифровыми проектами. Blockchain	
	В результате выполнения практической работы студент овладеет навыками применения Agile	
	практик для реализации современных цифровых проектов, а также навыками работы с	
	распределенными системами на основе технологии Blockchain.	
2	Генеративный ИИ. Текст. Изображения	
	В результате выполнения практической работы студент овладеет навыками использования	
	генеративного искусственного интеллекта для генерации текста и изображений.	
3	Искусственный интеллект. Обучение с учителем. Обучение без учителя	
	В результате выполнения практической работы студент овладеет навыками работы с алгоритмами	
	классификации с использованием языка программирования Python и библиотеки sklearn.	
4	Предсказательная аналитика. Anaconda. Алгоритмы анализа данных	
	В результате выполнения практической работы студент овладеет навыками работы с	
	инструментами, входящими в пакет Anaconda и базовыми алгоритмами анализа данных с	
	использованием языка программирования Python.	

№	Томотимо произвимомим роматуй/угротую со нерукоми		
п/п	Тематика практических занятий/краткое содержание		
5	Анализ данных. Визуализация данных. Инструменты BI		
	В результате выполнения практической работы студент овладеет навыками использования ВІ-		
	инструментов для анализа данных и использования инструментов визуализации данных для		
	построения дашбордов.		
6	Тесхнологии AR. Тесхнологии VR		
	В результате выполнения практической работы студент овладеет навыками применения технологий		
	дополненной реальности и виртуальной реальности.		
7	Big data		
	В результате выполнения практической работы студент овладеет навыками использования		
	инструментов анализа больших данных и построения отчетов, а также навыками работы с		
	системами пакетной и потоковой обработки данных.		
8	Промышленный интернет вещей. Raspberry Pi. Облачные платформы		
	В результате выполнения практической работы студент овладеет навыками работы с эмулятором		
	Raspberry Pi и с облачной платформой для интернета вещей.		

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Изучение рекомендованной литературы
2	Подготовка к практическим занятиям
3	Подготовка к промежуточной аттестации.
4	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Украинцев, Ю. Д. Информатизация общества : учебное пособие / Ю. Д. Украинцев. — Санкт-Петербург : Лань, 2019. — 220 с. — ISBN 978-5-8114-3845-7	https://e.lanbook.com/book/123696 (дата обращения: 21.11.2024). — Текст : электронный
2	Ли, П. Архитектура интернета вещей / П. Ли; перевод с английского М. А. Райтман. — Москва: ДМК Пресс, 2019. — 454 с. — ISBN 978-5-97060-672-8	https://e.lanbook.com/book/112923 (дата обращения: 21.11.2024). — Текст : электронный
3	Сергеев, Л. И. Цифровая экономика: учебник для вузов / Л. И. Сергеев, Д. Л. Сергеев, А. Л. Юданова; под редакцией Л. И. Сергеева. — 2-е изд., перераб. и доп. — Москва: Издательство Юрайт, 2025. — 437 с. — (Высшее образование). — ISBN 978-5-534-15797-0.	https://urait.ru/bcode/567301

4	Гофман, П. М. Промышленный интернет вещей.	https://e.lanbook.com/book/330155
	Компоненты полевого уровня: учебное пособие /	
	П. М. Гофман, П. А. Кузнецов. — Красноярск:	
	СибГУ им. академика М. Ф. Решетнёва, 2022. —	
	176 с. — Текст : электронный	
5	Дубков, И. С. Решение практических задач на базе	https://e.lanbook.com/book/118206
	технологии интернета вещей: учебное пособие /	(дата обращения: 21.11.2024). –
	И. С. Дубков, П. С. Сташевский, И. Н. Яковина. —	Текст: электронный
	Новосибирск : НГТУ, 2017. — 80 с. — ISBN 978-	
	5-7782-3161-0	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/);

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru);

Образовательная платформа «Юрайт» (https://urait.ru/);

Учебные курсы Microsoft (https://www.microsoft.com/ru-ru/learning/training.aspx).

- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).
 - 1. Microsoft Internet Explorer (или другой браузер);
 - 2. Операционная система Microsoft Windows;
 - 3. Microsoft Office;
 - 4. Python 3.8;
 - 5. PyCharm Community 2021.3.
- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).
- 1. Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования.
- 2. Для практических занятий наличие персональных компьютеров вычислительного класса.
 - 9. Форма промежуточной аттестации:

Зачет во 2 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

старший преподаватель кафедры «Цифровые технологии управления транспортными процессами»

Е.А. Заманов

Согласовано:

Заведующий кафедрой УЭРиБТ

А.Ф. Бородин

Заведующий кафедрой ЦТУТП

В.Е. Нутович

Председатель учебно-методической

комиссии Н.А. Андриянова