МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 01.03.02 Прикладная математика и информатика, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Численные методы

Направление подготовки: 01.03.02 Прикладная математика и

информатика

Направленность (профиль): Математическое моделирование и системный

анализ

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5665

Подписал: заведующий кафедрой Нутович Вероника

Евгеньевна

Дата: 10.04.2025

1. Общие сведения о дисциплине (модуле).

Целью освоения дисциплины (модуля) является:

- ознакомление с основными методами численного решения задач линейной алгебры, методами аппроксимации функций, численного дифференцирования и интегрирования, приближённого решения ОДУ и уравнений в частных производных; изучение влияния погрешности вычислений, метода и исходных данных на результат решения, исследование устойчивости численных алгоритмов.

Задачами дисциплины (модуля) являются:

- развитие навыков технологии программирования применительно к решению вычислительных задач (в том числе и большой размерности);
- формирование навыков представления решения математических задач в виде численных алгоритмов;
- развитие компетенций в сфере использования методов прикладной математики и компьютерных технологиё, включая системы автоматизированных математических вычислений;
- формирование навыков организации и управления разработкой программного обеспечения, использующего методы численного анализа и компьютерного моделирования.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ПК-2 - Уметь ставить и решать задачу по полученным в результате эксперимента или исследования результатам.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- уровень развития вычислительной техники и численных методов на текущий момент времени

Уметь:

- применять новые информационные технологии и методы вычислений для решения прикладных задач

Владеть:

- новыми численными методами и алгоритмами, приобретаемыми в результате периодического повышения своей квалификации и мастерства

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 8 з.е. (288 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

		Количество часов	
Тип учебных занятий	Всего	Семестр	
		№4	№5
Контактная работа при проведении учебных занятий (всего):	176	80	96
В том числе:			
Занятия лекционного типа	96	48	48
Занятия семинарского типа	80	32	48

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 112 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№ п/п	Тематика лекционных занятий / краткое содержание	
1	Погрешность	
	Рассматриваемые вопросы:	
	- абсолютная и относительная погрешности;	

No		
п/п	Тематика лекционных занятий / краткое содержание	
11/11	was and was war a reason and the	
	- классификация погрешностей; - неустранимая погрешность функции.	
	- неустранимая погрешность функции вычислительная погрешность.	
2	Неустранимая погрешность решения СЛАУ	
2	Рассматриваемые вопросы:	
	гассматриваемые вопросы: - число обусловленности матрицы;	
	- число ооусловленности матрицы; - плохо обусловленные СЛАУ.	
3	Матрицы специального вида	
3	<u> </u>	
	Рассматриваемые вопросы:	
	- N и M — матрицы;	
	- треугольные матрицы, матрицы с ортогональными столбцами; - матрицы вращений, отражений и перестановок.	
1		
4	Точные методы решения СЛАУ (часть 1)	
	Рассматриваемые вопросы:	
	- Метод Гаусса и метод Гаусса с выбором главного элемента;	
	- LU и NPU разложениt матрицы; - метод квадратного корня (Холецкого).	
5	Точные методы решения СЛАУ (часть 2)	
3	• • • • • • • • • • • • • • • • • • • •	
	Рассматриваемые вопросы:	
	- метод ортогонализации; - метод вращений;	
	- метод вращении, - метод отражений.	
6	-	
U	Приближенные методы решения СЛАУ (часть 1)	
	Рассматриваемые вопросы:	
	- метод простой итерации;	
	 условия сходимости метода; способы приведения к виду удобному для итерации. 	
7	Приближенные методы решения СЛАУ (часть 2)	
/		
	Рассматриваемые вопросы:	
	- метод Зейделя, условия сходимости;	
	- метод релаксации; - метод скорейшего спуска.	
8		
o	Конечноразностные уравнения (часть 1)	
	Рассматриваемые вопросы:	
	- конечноразностные уравнения первого порядка;	
	 - линейные конечноразностные уравнения произвольного порядка порядка, свойства его решения; - задача Коши и краевая задача. 	
9	- задача коши и краевая задача. Конечноразностные уравнения (часть 2)	
J		
	Рассматриваемые вопросы: - линейные конечноразностные уравнения второго порядка, метод прогонки;	
	- линеиные конечноразностные уравнения второго порядка, метод прогонки; - линейные конечноразностные уравнения второго порядка с постоянными коэффициентами;	
	- линсиные конечноразностные уравнения второго порядка с постоянными коэффициентами, - метод вариации постоянной.	
10	Задача на собственные значения и собственные векторы	
10	-	
	Рассматриваемые вопросы: - степенной метод;	
	- метод вращений Якоби; - OR — эторитм для несимметричных матриц	
11	- QR – алоритм для несимметричных матриц.	
11	Интерполирование (часть 1)	
	Рассматриваемые вопросы:	
	- постановка задачи аппроксимации функций интерполяционным многочленом;	

Mo				
№	Тематика лекционных занятий / краткое содержание			
п/п	1 VIII 6			
	- системы функций Чебышева;			
10	- интерполяционный многочлен Лагранжа, формула остаточного члена.			
12	Интерполирование (часть 2)			
	Рассматриваемые вопросы:			
	- конечные разности;			
	- интерполяционный многочлен Ньютона, формула остаточного члена;			
12	- схема Эйткена, вопрос о сходимости интерполяционного процесса.			
13				
	Рассматриваемые вопросы:			
	- многочлены наилучшего приближения (МНП), теорема существования и единственности;			
	- равномерные приближения;			
	- теоремы Хаара и Чебышева; - простейшие примеры построения МНРП;			
	- простеишие примеры построения мтп 11, - многочлены Чебышева, их свойства;			
	- интерполирование по чебышевским узлам, наилучшая равномерная оценка погрешности.			
14	Аппроксимация функций (часть 2)			
1+	Рассматриваемые вопросы:			
	- среднеквадратические приближения, основная теорема;			
	- метод наименьших квадратов;			
	- системы ортогональных многочленов.			
15	-			
13	Рассматриваемые вопросы:			
	- происхождение задачи о сплайнах, ее общая постановка, основные теоремы;			
	- сплайны 1-го и 3-го порядка;			
	- базисные сплайны.			
16				
10	Рассматриваемые вопросы:			
	- ДПФ для периодической функции;			
	- ДПФ для периодической функции, - ДПФ для производных;			
	- ДПФ для непериодической функции. Понятие о БПФ.			
17				
	Рассматриваемые вопросы:			
	- квадратурные формулы;			
	- формулы Ньютона-Котеса, оценка погрешности;			
	- формулы Гаусса, теорема об оптимальном выборе узлов.			
18	Численное дифференцирование			
	Рассматриваемые вопросы:			
	- аппроксимация производных, вывод формул численного дифференцирования;			
	- остаточные члены формул численного дифференцирования;			
	- оптимизация выбора шага численного дифференцирования.			
19	Приближенные методы решения ОДУ			
	Рассматриваемые вопросы:			
	- методы Эйлера и ээээйлера - Коши решения ОДУ первого порядка;			
	- методы Рунге-Кутта решения ОДУ и их систем;			
	- пошаговый контроль точности в методах Рунге-Кутта.			
20	Метод сеток (часть 1)			
	Рассматриваемые вопросы:			
	- правила перехода от непрерывной задачи к сеточной;			
	- аппроксимация, устойчивость и сходимость разностных схем;			
	- метод сеток решения краевой задачи ОДУ 2-го порядка;			

$N_{\underline{0}}$	Тематика лекционных занятий / краткое содержание		
п/п			
21	Метод сеток (часть 2)		
	Рассматриваемые вопросы:		
	- метод сеток решения уравнений с частными производными гиперболического типа;		
	- метод сеток решения уравнений с частными производными параболического типа;		
	- метод сеток решения уравнений с частными производными эллиптического типа		
22	Вариационные методы решения краевых задач (часть 1)		
	Рассматриваемые вопросы:		
	- три теоремы о сведении краевой задачи к вариационной;		
	- метод Ритца решения вариационной задачи;		
	- применение метода Ритца для решения краевой задачи ОДУ 2-го порядка;		
	- применение метода Ритца для решения задачи Дирихле;		
23	Вариационные методы решения краевых задач (часть 2)		
	Рассматриваемые вопросы:		
	- метод Галеркина. Эквивалентность методов Ритца и Галеркина;		
	- метод конечных элементов решения краевых и вариационных задач;		
	- применение метода конечных элементов для решения краевой задачи ОДУ 2-го порядка.		
24	Метод разделения переменных		
	Рассматриваемые вопросы:		
	- оператор второй разностной производной и задача на собственные значения;		
	- свойства собственных значений и собственных функций оператора второй разностной		
	производной;		
	- применение метода разделения переменных для исследования разностных схем уравнений в		
	частных производных.		

4.2. Занятия семинарского типа.

Лабораторные работы

№	Наименование лабораторных работ / краткое содержание			
п/п				
1	Точные методы решения СЛАУ. (часть 1). Метод Гаусса и LU – разложение			
	В результате выполнения лабораторной работы студент получает представление о влиянии			
	погрешности в исходных данных на решение СЛАУ.			
2	Точные методы решения СЛАУ. (часть 2). Метод Гаусса с выбором главного			
	элемента и NPU – разложение			
	В результате выполнения лабораторной работы студент получает представление о влиянии			
	погрешности в исходных данных на решение СЛАУ.			
3	Точные методы решения СЛАУ. (часть 3) Метод квадратного корня.			
	В ходе выполнения лабораторной работы студент изучает особенности решения систем с			
	симметричными матрицами.			
4	Приближенные методы решения СЛАУ. (часть 1) Метод простой итерации			
	В результате выполнения лабораторной работы студент получает представление о влиянии числа			
	обусловленности матрицы на рост количества итераций.			
5	Приближенные методы решения СЛАУ. (часть 2) Метод Зейделя			
	В ходе выполнения лабораторной работы студент получает возможность сравнения различных			
	итерационных методов			
6	Конечноразностные уравнения. (часть 1) Линейные уравнения с постоянными			
	коэффициентами			

No		
п/п	Наименование лабораторных работ / краткое содержание	
	В процессе выполнения работы изучаетизучает построение общего однородного и частного неоднородного решения уравнения.	
7	Конечноразностные уравнения. (часть 2) Метод прогонки решения линейного	
	уравнения второго порядка.	
	При выполнения лабораторной работы студент изучает зависимость устойчивости решения	
	уравнения от его параметров.	
8	Метод вращений Якоби решения задачи на собственные значения и собственные	
	векторы симметричной матрицы	
	В ходе выполнения лабораторной работы студент изучает особенности ортогональных	
преобразований системы уравнений.		
9	Интерполирование. (часть 1) Интерполяционные многочлены Лагранжа и Ньютона	
	В ходе выполнения лабораторной работы студент изучает особенности приближения функций	
10	интерполяционными многочленами.	
10	Интерполирование. (часть 2) Интерполяционные многочлен Эрмита	
	При выполнения лабораторной работы студент изучает возможность интерполяции по кратным	
11	узлам.	
11	Многочлены наилучшего равномерного приближения	
	В ходе выполнения лабораторной работы студент изучает особенности решения систем с симметричными матрицами.	
12	Метод наименьших квадратов	
12		
В процессе выполнения лабораторной работы студент изучает методы построения МНР		
13	Дискретное преобразование Фурье В ходе выполнения лабораторной работы студент изучает особенности приближения функций	
	тригонометричекими интерполяционными многочленами.	
14		
17	В процессе выполнения лабораторной работы студент знакомится с технологиями, позволяющ	
	ускорить процесс вычисления ДПФ.	
15	Численное интерирование (часть 1) Квадратурные формулы Ньютона – Котеса	
	При выполнения лабораторной работы студент изучает особенности применения методов	
	прямоугольников, трапеций и Симпсона при вычислении приближенных интегралов.	
16	Численное интерирование. (часть 2) Квадратурные формулы Гаусса	
	При выполнения лабораторной работы студент изучает системы ортогональных многочленов,	
	применяемые для интегралов специального типа.	
17	Методы приближенного решения задачи Коши для ОДУ. Методы Рунге - Кутта.	
	В ходе выполнения лабораторной работы студент изучает возможности уточнения приближенного	
	решения за счет автоматического выбора шага метода.	
18	Методы приближенного решения жестких ОДУ	
	В результате выполнения лабораторной работы студент получает представление о влиянии	
	вычислительной погрешности на точность решения задачи.	
19	Метод сеток решения краевых задач для ОДУ 2-го порядка	
	При выполнения лабораторной работы студент изучает технологию применения метода сеток для	
	решения ОДУ.	
20	Метод сеток решения дифференциальных уравнений в частных производных	
	(УЧП) (часть 1) Уравнения гиперболического типа	
	При выполнения лабораторной работы студент изучает технологию применения метода сеток для	
	решения уравнения колебаний.	
21	Метод сеток решения дифференциальных уравнений в частных производных	
	(УЧП) (часть 2) Уравнения параболического типа	

№ п/п	Наименование лабораторных работ / краткое содержание	
	При выполнения лабораторной работы студент изучает технологию применения метода сеток для	
	решения уравнения теплопроводности.	
22	Метод сеток решения дифференциальных уравнений в частных производных	
	(УЧП) (часть 3) Уравнения эллиптического типа	
	При выполнения лабораторной работы студент изучает технологию применения метода сеток для	
	решения уравнения Лапласа.	
23	Метод конечных элементов решения краевой задачи для ОДУ 2-го порядка	
	При выполнения лабораторной работы студент изучает технологию применения метода конечных	
	элементов для решения ОДУ.	
24	Метод Бубнова - Галеркина решения краевой задачи для ОДУ 2-го порядка	
	При выполнения лабораторной работы студент изучает технологию применения вариационных	
	методов решения ОДУ.	

4.3. Самостоятельная работа обучающихся.

№	Вид самостоятельной работы	
п/п	Вид самостоятельной работы	
1	Работа с литературой.	
2	Работа с лекционным материалом.	
3	Текущая подготовка к занятиям.	
4	Выполнение курсового проекта.	
5	Подготовка к промежуточной аттестации.	
6	Подготовка к текущему контролю.	

4.4. Примерный перечень тем курсовых проектов

- 1.Метод характеристик решения гиперболических систем квазилинейных дифференциальных уравнений с частными производными.1. Метод характеристик решения гиперболических систем квазилинейных дифференциальных уравнений с частными производными.
 - 2. Приближенное вычисление кратных интегралов.
- 3. Приближенное построение многочленов наилучшего равномерного приближения.
- 4. Метод Адамса решения обыкновенных дифференциальных уравнений.
- 5. Метод прямых решения краевых задач для дифференциальных уравнений с частными производными.
 - 6. Приближенные методы решения интегральных уравнений.
 - 7. Приближение функций сплайнами третьего порядка.
- 8. Численное интегрирование жестких систем обыкновенных дифференциальных уравнений.

- 9. Многомерное интерполирование.
- 10. Численное исследование устойчивости простейших разностных схем для уравнений параболического типа.
- 11. Численное исследование устойчивости простейших разностных схем для уравнений эллиптического типа.
- 12. Теорема Тихонова-Самарского и решение некорректно поставленных задач.
- 13. Численное решение некорректно поставленных задач. Квазирешение.
 - 14. Разностные схемы для уравнений газовой динамики.
 - 15. Метод конечных элементов, основанный на методе Галеркина.
 - 16. Построение ф

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

	епии дисциплины (модули).	T
№ п/п	Библиографическое описание	Место доступа
1	Новиков, А. И. Численные методы линейной алгебры: учебное пособие / А. И. Новиков. — Рязань: РГРТУ, 2021. — 50 с. — Текст: электронный // Лань: электронно-библиотечная система	https://e.lanbook.com/book/168043 (дата обращения: 24.06.2025)
2	Сухарев, А. Г. Численные методы оптимизации: учебник и практикум для вузов / А. Г. Сухарев, А. В. Тимохов, В. В. Федоров. — 3-е изд., испр. и доп. — Москва: Издательство Юрайт, 2021. — 367 с. — (Высшее образование). — ISBN 978-5-534-04449-2	https://urait.ru/bcode/487195 (дата обращения: 24.06.2025)
3	Численные методы: учебник и практикум для вузов / У. Г. Пирумов [и др.]; под редакцией У. Г. Пирумова. — 5-е изд., перераб. и доп. — Москва: Издательство Юрайт, 2023. — 421 с. — (Высшее образование). — ISBN 978-5-534-03141-6	https://urait.ru/bcode/510769 (дата обращения: 24.06.2025)
4	Демидович, Б. П. Основы вычислительной математики : учебное пособие / Б. П. Демидович, И. А. Марон. — 8-е изд., стер. — Санкт-Петербург : Лань, 2022. — 672 с. — ISBN 978-5-8114-0695-1	https://e.lanbook.com/book/210674 (дата обращения: 24.06.2025)

5	Локтионов, И. К. Численные методы:	https://znanium.com/catalog/product/1902598
	учебник / И. К. Локтионов, Л. П.	(дата обращения: 24.06.2025)
	Мироненко, В. В. Турупалов; под общ.	
	ред. канд. техн. наук, проф. В. В.	
	Турупалова Москва ; Вологда : Инфра-	
	Инженерия, 2022 380 с ISBN 978-5-	
	9729-0786	

- 6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).
 - Научно-техническая библиотека РУТ (МИИТ) (http://library.miit.ru);
- Информационный портал Научная электронная библиотека eLIBRARY.RU (www.elibrary.ru);
 - Образовательная платформа «Юрайт» (https://urait.ru/);
- Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/);
- Интернет-университет информационных технологий (http://www.intuit.ru/).
- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).
 - Операционная система Windows;
 - Microsoft Office;
 - MS Teams:
 - Поисковые системы.
- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Для проведения занятий лекционного типа требуются аудитории, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

Для лабораторных занятий – наличие персональных компьютеров.

9. Форма промежуточной аттестации:

Зачет в 4 семестре.

Курсовой проект в 5 семестре.

Экзамен в 5 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

старший преподаватель кафедры «Цифровые технологии управления транспортными процессами»

В.П. Посвянский

Согласовано:

Заведующий кафедрой ЦТУТП

В.Е. Нутович

Председатель учебно-методической

комиссии Н.А. Андриянова