МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы магистратуры по направлению подготовки 13.04.01 Теплоэнергетика и теплотехника, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Экономия энергии при использовании вторичных энергетических ресурсов

Направление подготовки: 13.04.01 Теплоэнергетика и теплотехника

Направленность (профиль): Энергосберегающие процессы и технологии

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 377843

Подписал: заведующий кафедрой Дмитренко Артур

Владимирович

Дата: 24.04.2024

1. Общие сведения о дисциплине (модуле).

Цель изучения дисциплины: изучение энергетического потенциала отходов побочных и промежуточных продуктов, образующихся в теплотехнических агрегатах и системах теплоснабжения, которые можно частично или полностью использовать для энергоснабжения других агрегатов ли в самой системе.

Задачами дисциплины (модуля) являются:

- овладение методологией расчета количества выхода побочных и промежуточных продуктов, образующихся в теплотехнических агрегатах и системах теплоснабжения, а также получение навыков исчисления экономической целесообразности применения этих ресурсов.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ПК-4 - Способность разрабатывать и оптимизировать технологические решения при проектировании теплоэнергетических объектов и систем.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

современные тенденции технического прогресса в целом и в области энергетики, В правовые, технические, экономические, частности; экологические основы энерго и ресурсосбережения, основные балансовые соотношения для анализа энергопотребления, основные критерии энергосбережения, типовые энергосберегающие мероприятия в энергетике, промышленности, ж.д. транспорте, объектах ЖКХ

Уметь:

проводить технические расчеты по проектам, технико-экономический и функционально-стоимостной анализ эффективности проектных решений, использовать достижения современной науки для решения теоретических и практических вопросов модернизации технологического оборудования агрегатов и устройств промышленной теплоэнергетики, с учетом тенденций сбережения и экономии энергоресурсов и материалов, улучшения условий труда и техники безопасности, экологической безопасности

Владеть:

навыками пользования методическими нормативными материалами, технической и технологической документацией, законодательными актами в области энергосбережения, современными информационными средствами и технологиями; выполнения технико-экономического анализа эффективности использования природных ресурсов, энергии и материалов; навыками разработки технически и экономически целесообразных схем и решений по повышению энергетической эффективности объектов теплоэнергетики и промышленных предприятий

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 5 з.е. (180 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тин мабан и запатий	Количество часов	
Тип учебных занятий		Семестр №3
Контактная работа при проведении учебных занятий (всего):	64	64
В том числе:		
Занятия лекционного типа	32	32
Занятия семинарского типа	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 116 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).

4.1. Занятия лекционного типа.

No	_				
п/п	Тематика лекционных занятий / краткое содержание				
1	Классификация вторичных энергетических ресурсов				
	Рассматриваемые вопросы:				
	- понятие энергетических отходов;				
	- горючие ВЭР;				
	- тепловые ВЭР;				
	- ВЭР избыточного давления				
	- теплоутилизационная установка;				
	- направления использования ВЭР;				
	- экономия топлива за счет использования ВЭР.				
2	Источники ВЭР				
	Рассматриваемые вопросы:				
	- источники низко-, средне- и высокопотенциальных ВЭР;				
	- источники горючих ВЭР;				
	- источники тепловых ВЭР;				
	- источники ВЭР избыточного давления.				
3	Экономия топлива за счет использования ВЭР				
	Рассматриваемые вопросы:				
	- удельный выход горючих, тепловых ВЭР, ВЭР избыточного давления;				
	- вычисление общего расхода ВЭР;				
	- вычисление возможной выработки теплоты за счет использования ВЭР;				
	- расчет возможной выработки электрической энергии за счет использования ВЭР;				
	- расчет экономии топлива.				
4	Горючие ВЭР промышленных производств				
	Рассматриваемые вопросы:				
	- источники углеродсодержащих отходов;				
	- переработка горючих отходов перед сжиганием;				
	- типы печей для сжигания горючих ВЭР.				
5	Горючие ВЭР металлургических производств				
	Рассматриваемы вопросы:				
	- виды технологических процессов-источников горючих ВЭР;				
	- особенности ВЭР металлургических производств, характеристики газообразных горючих ВЭР;				
	- состав ВЭР металлургических производств;				
	- экономия топлива при использовании ВЭР.				
6	Горючие ВЭР. Анаэробная переработка биомассы.				
	Рассматриваемые вопросы:				
	- биохимические процессы при анаэробном сбраживании;				
	- состав биогаза;				
	- основные режимы анаэробной переработки;				
	- схема биогазовой установки;				
	- методика определения технических параметров биогазогенератора.				
7	Тепловые ВЭР. Котлы – утилизаторы				
	Рассматриваемые вопросы:				
	- классификация котлов-утилизаторов;				
	- схемы котлов-утилизоторов.				
8	Контактные теплообменники				
	Рассматриваемые вопросы:				
	- классификация контактных теплообменников;				

№	Тематика лекционных занятий / краткое содержание			
п/п	тематика пекционивих запитии у краткое содержание			
	- типы контактных теплообменников;			
	- положительные и отрицательные стороны теплообменников разных типов.			
9	Тепловые ВЭР. Рекуператоры и регенераторы			
	Рассматриваемые вопросы:			
	- тепловые схемы рекуператоров;			
	- расчетные уравнения рекуператоров;			
	- типы рекуператоров;			
	- типы регенераторов.			
10	Паровые аккумуляторы			
	Рассматриваемые вопросы:			
	- принцип работы;			
	- конструкция парового аккумулятора;			
	- определение размера парового аккумулятора;			
	- обеспечение безопасности.			
11	Низкотемпературные тепловые ВЭР			
	Рассматриваемые вопросы:			
	- органический цикл Ренкина;			
	- схема фреонова турбокомпрессора;			
	- хладагенты;			
	- сравнение характеристик хладагентов.			
12	ВЭР избыточного давления			
	Рассматриваемые вопросы:			
	- способы утилизации ВЭР избыточниго давления;			
	- классификация турбин;			
	- схемы турбин.			

4.2. Занятия семинарского типа.

Практические занятия

$N_{\underline{0}}$	Т			
п/п	Тематика практических занятий/краткое содержание			
1	Вторичные энергетические ресурсы систем централизованного теплоснабжения			
	На практическом занятии студенты приобретают навыки чтения принципиальных схем			
	теплофикации при теплоносителе - пар. А также навыки вычисления количества вторичных			
	энергетических ресурсов при работе энергосистем промышленных предприятий и отдельных			
	отраслей промышленности, вторичных энергетических ресурсов паротурбинных электростанций.			
2	Паровые системы			
	На практическом занятии студенты приобретают навыки расчета однотрубных паровых систем			
	теплоснабжения с возвратом конденсата, двухтрубных паровых систем с возвратом конденсата,			
	однотрубных паровых систем без возврата конденсата			
3	Конденсатные системы промышленных предприятий			
	На практическом занятии студенты приобретают навыки расчета экономической эффективности			
	использования конденсата водяного пара, получаемого в пароиспользующих аппаратах			
	промышленных предприятий. Получают навыки разработки мероприятий по увеличению сбора и			
	возврата конденсата, навыки составления материальных и тепловых балансов пароконденсатных			
	систем. Получают навыки работы с контрольно-измерительными приборами.			
4	Повышение эффективности использования теплоты водяного пара на			
	предприятиях и ЖКХ			

No॒	Тематика практических занятий/краткое содержание		
п/п	темитики прикти теских запитии криткое содержиние		
	На практическом занятии студенты приобретают навыки расчета сепараторов водяного пара		
	вторичного вскипания		
5	Использование отработавшего и вторичного производственного пара		
	На практическом занятии студенты приобретают навыки применения установок для использования		
	отработавшего пара, паровых аккумуляторов.		
6	Использование внутренних производственных тепловыделения		
	На практическом занятии студенты приобретают навыки составления теплового баланса		
	производственных помещений. Получают навык расчета экономии теплоты при учете суммы		
	внутренних тепловыделений и теплоты солнечной радиации, вносимой в помещение через		
	остекленные поверхности и бесчердачные покрытия.		
7	Экономическая эффективность использования вторичных энергетических ресурсов		
	На практическом занятии студенты приобретают навыки расчета экономической эффективности от		
	использования вторичных энергетических ресурсов, расчетов экономии условного топлива, годовой		
	стоимости сэкономленного топлива, срока окупаемости капиталовложений в утилицию ВЭР		

4.3. Самостоятельная работа обучающихся.

No	Руун оомоотоятому ной тоботу	
Π/Π	Вид самостоятельной работы	
1	Подготовка к практическим работам	
2	Проработка лекционного материала	
3	Выполнение курсовой работы.	
4	Подготовка к промежуточной аттестации.	
5	Подготовка к текущему контролю.	

4.4. Примерный перечень тем курсовых работ

- 1. Использование биогаза в отоплении и электроснабжении.
- 2. Использование тепловой энергии при сжигании твердых бытовых отходов.
- 3. Использование рекуперации тепла для экономии энергии в системах вентиляции.
- 4. Утилизация тепловых ВЭР компрессорной установки для нужд системы горячего водоснабжения.
 - 5. Анализ и способы утилизации вторичных энергоресурсов.
 - 6. Использование ВЭР в газотрубных котлах утилизаторах.
- 7. Система выработки электроэнергии за счет утилизации тепловых вторичных энергоресурсов.
 - 8. Система утилизации сбросной теплоты сточных вод.
- 9. Использование двигателя Стирлинга для выработки электроэнергии на вторичных тепловых энергоресурсах.

- 10. Экономия энергии при использовании вторичных энергетических ресурсов.
 - 11. Использование котельных на отработанном масле.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Миронов Г. С.Энергетическое использование вторичных древесных ресурсов. Красноярск: СибГУ им. М. Ф. Решетнёва, 2020. – с. 100	ЭБС «ЛАНЬ» https://reader.lanbook.com/book/165894 (дата обращения: 03.02.2025) Текст: электронный
2	А.А. Лукаш. Энергетическое использование древесной биомассы. Учебное пособие. С-Пб.: Лань, 2020. – с. 124. ISBN: 978-5-8114-4732-9	ЭБС «ЛАНЬ» https://reader.lanbook.com/book/147113#2 (дата обращения: 03.02.2025) Текст: электронный
3	Парамонов А. М., Стариков А. Системы вздухоснабжения предприятий: учебное пособие. Издательство «Лань», 2022. – с. 160. ISBN 978-5-8114-1149-8	ЭБС «ЛАНЬ» https://e.lanbook.com/book/209618 (дата обращения: 03.02.2025) Текст: электронный
4	Лебедев В. М., Приходько С. В., Гаак В. К., Стариков А. П., Глухов С. В. Региональные проблемы теплоэнергетики: учебное пособие. Издательство: Лань, 2022. – с. 136. ISBN 978-5-8114-3694-1	ЭБС «ЛАНЬ» https://e.lanbook.com/book/206825 (дата обращения: 03.02.2025) Текст: электронный
5	Ю. А. Гичёв вторичные энергоресурсы промышленных предприятий часть I. Днепропетровск: НМетАУ, 2012, - с. 58	https://studylib.ru/doc/62998/vtorichnye-e-nergoresursy-promyshlennyh-predpriyatij (дата обращения 17.05.23) — Текст электронный
6	Денисов В. В., Денисова И. А., Дрововозова Т. И., Москаленко А. П. Основы природопользования и энергоресурсосбережения: учебное пособие. Издательство: Лань, 2022. – с. 408. ISBN 978-5-8114-3962-1	https://e.lanbook.com/book/206198 (дата обращения: 03.02.2025) Текст: электронный

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

http://library.miit.ru/ - электронно-библиотечная система Научно-технической библиотеки МИИТ.

http://elibrary.ru/ - научно-электронная библиотека.

Поисковые системы: Yandex, Mail.

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Компьютеры должны быть обеспечены стандартными лицензионными программными продуктами и обязательно программным продуктом Microsoft Office не ниже Microsoft Office 2007.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Для проведения практических занятий имеется компьютерный класс; кондиционер; компьютеры. Имеется комплект переносных инструментов и оборудования для проведения энергетических обследований

9. Форма промежуточной аттестации:

Курсовая работа в 3 семестре.

Экзамен в 3 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент, к.н. кафедры «Теплоэнергетика транспорта» Института транспортной техники и систем управления

И.В. Агафонова

Согласовано:

Заведующий кафедрой ТТ

А.В. Дмитренко

Председатель учебно-методической

комиссии С.В. Володин