МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности 23.05.05 Системы обеспечения движения поездов, утвержденной первым проректором РУТ (МИИТ)

Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Электрические машины и трансформаторы

Специальность: 23.05.05 Системы обеспечения движения

поездов

Специализация: Электроснабжение железных дорог

Форма обучения: Заочная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 167365

Подписал: заведующий кафедрой Бугреев Виктор Алексеевич

Дата: 21.04.2025

1. Общие сведения о дисциплине (модуле).

Целью освоения учебной дисциплины «Электрические машиныи трансформаторы» является формирование у обучающихся компетенций в соответствии с СУОС по специальности «Системы обеспечения движения поездов» и приобретение ими:

- знаний о об устройстве, теории работы и характеристиках электрических машин и трансформаторов, конструкции, параметрах и типах электрических машин различного назначения, о направлениях совершенствования конструкции, технологии производства, а также эксплуатации и ремонта электрических машин и трансформаторов;
- умений с учетом характеристик, параметров и условий работы электрических машин и трансформаторов, применять и эксплуатировать их в системах обеспечения движения поездов, в электроприводах оборудования предприятий железнодорожного транспорта и промышленности;
- навыков экспериментального определения характеристик электрических машин и трансформаторов, расчета двигателей и трансформаторов, выбора типа и мощности трансформаторов и двигателей для устройства обеспечения движения поездов и оборудования предприятий железнодорожного транспорта (депо, ремонтных заводов и других).

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ПК-55 - Способен применять электротехнические знания для решения профессиональных задач при организации работ по техническому обслуживанию и ремонту объектов системы электроснабжения железных дорог.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Уметь:

- умений с учетом характеристик, параметров и условий работы электрических машин и трансформаторов, применять и эксплуатировать их в системах обеспечения движения поездов, в электроприводах оборудования предприятий железнодорожного транспорта и промышленности;

Знать:

- знаний о об устройстве, теории работы и характеристиках электрических машин и трансформаторов, конструкции, параметрах и типах электрических машин различного назначения, о направлениях совершенствования конструкции, технологии производства, а также эксплуатации и ремонта электрических машин и трансформаторов;

Владеть:

- навыков экспериментального определения характеристик электрических машин и трансформаторов, расчета двигателей и трансформаторов, выбора типа и мощности трансформаторов и двигателей для устройства обеспечения движения поездов и оборудования предприятий железнодорожного транспорта (депо, ремонтных заводов и других).
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 6 з.е. (216 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №3
Контактная работа при проведении учебных занятий (всего):	24	24
В том числе:		
Занятия лекционного типа	12	12
Занятия семинарского типа	12	12

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 192 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или)

лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.

- 4. Содержание дисциплины (модуля).
- 4.1. Занятия лекционного типа.

No				
п/п	Тематика лекционных занятий / краткое содержание			
1	Раздел 1. Общие вопросы теории электрических машин.			
	1.1. Классификация электрических машин, основные конструктивные исполнения. Принцип			
	действия электрических машин. Электромеханическое преобразование энергии.			
	1.2. Магнитное поле электрических машин. Расчет магнитной цепи явнополюсных и			
	неявнополюсных электрических машин.			
	1.3. Потери энергии в электрических машинах. Коэффициент полезного действия электрических			
	машин и зависимость его от нагрузки.			
	1.4. Нагревание и охлаждение электрических машин. Стандартные номинальные режимы работы			
	Номинальные технические данные электрических машин.			
2	Раздел 2. Электрические машины постоянного тока.			
	2.1. Принцип действия и устройство машин постоянного тока. Достоинства и недостатки и области			
	их применения. Назначение и свойства коллектора машины постоянного тока, как универсального			
	механического преобразователя тока.			
	2.2. Реакция якоря машины постоянного тока: искажение кривой распределения магнитной			
	индукции при нагрузке, уменьшение магнитного потока и ЭДС из-за насыщения отдельных			
	участков магнитной цепи.			
	2.3. Основные электромагнитные соотношения в машинах постоянного тока: электродвижущая сила			
	обмотки якоря, электромагнитный момент.			
	2.4. Якорные обмотки машин постоянного тока: устройство, принцип образования, основные			
	расчетные соотношения.			
	2.5. Коммутация в машинах постоянного тока: сущность процесса коммутации, природа щеточног			
	контакта. Общая характеристика причин искрения под щетками. Оценка степени искрения и настройка дополнительных полюсов.			
	2.6. Характеристики генераторов с независимым, параллельным, последовательным и смешанным			
	возбуждением. Процесс и условия самовозбуждения генераторов постоянного тока.			
	2.7. Электромеханические (токовые и механические) характеристики электродвигателей			
	постоянного тока с параллельным возбуждением и их расчет. Электромеханические (токовые и			
	механические) характеристики электродвигателей постоянного тока с последовательным			
	возбуждением и их расчет.			
	2.8. Управление двигателями постоянного тока: пуск в ход и изменение направления вращения			
	(реверсирование) двигателей. Торможение электродвигателей постоянного тока. Виды			
	электрического торможения и их характерные особенности. Способы регулирования угловой			
	скорости двигателей постоянного тока, их сравнительная оценка.			
3	Раздел 3. Трансформаторы.			
	3.1. Назначение, принцип действия и устройство трансформаторов. Классификация			
	трансформаторов по назначению, числу фаз, способу охлаждения. Номинальные величины.			
	3.2. Теория рабочего процесса трансформатора, уравнение магнитодвижущих сил, уравнение			
	электрического состояния.			
	3.3. Приведение параметров вторичной обмотки трансформатора к числу витков первичной. Векторная диаграмма и Т-образная схема замещения трансформатора.			
	3.4. Упрощенная схема замещения и соответствующая ей векторная диаграмма. Напряжение			

No Тематика лекционных занятий / краткое содержание Π/Π короткого замыкания. Внешняя характеристика трансформатора. 3.5. Активные сопротивления и индуктивные сопротивления рассеяния трансформаторов, и их расчет. Активная и реактивная составляющие напряжения короткого замыкания трансформатора. 3.6. Определение параметров схемы замещения трансформатора из опытов холостого хода и короткого замыкания. 3.7. Потери мощности в трансформаторе, коэффициент полезного действия и его зависимость от тока нагрузки. 3.8. Магнитные системы трехфазных трансформаторов, их особенности и области применения. Схемы и группы соединения трехфазных трансформаторов. Параллельная работа трансформаторов: условия включения, распределение нагрузки. 3.9. Регулирование напряжения трансформаторов: способы регулирования, способы переключения ответвлений. 3.10. Автотрансформаторы и области их применения. 3.11. Измерительные трансформаторы: назначение, схемы включения, особенности эксплуатации. Специальные типы трансформаторов: сварочные трансформаторы, преобразовательные трансформаторы. Раздел 4. Вопросы теории электрических машин переменного тока. 4.1. Основные типы электрических машин переменного тока, конструктивные схемы, устройство и принцип действия. Вращающееся магнитное поле многофазной обмотки переменного тока: принцип образования, основные свойства. 4.2. Основные принципы выполнения многофазных обмоток переменного тока. Схемы обмоток. Магнитодвижущие силы обмоток переменного тока. 5 Раздел 5. Асинхронные машины. 5.1. Устройство, принцип действия, классификация асинхронных машин, области применения. Теория рабочего процесса асинхронной машины: уравнение магнитодвижущих сил, уравнения электрического состояния обмоток статора и ротора, составленные на основе второго закона Кирхгофа. 5.2. Приведение рабочего процесса асинхронной машины к рабочему процессу трансформатора, Т образная схема замещения, векторная диаграмма. Расчет токов статора и ротора асинхронного двигателя по Т – образной схеме замещения. Зависимость токов от скольжения. 5.3. Расчет механической мощности, полезной и подведенной мощности асинхронного двигателя. Коэффициент полезного действия асинхронного двигателя. Зависимость электромагнитного момента от скольжения, напряжения питающей сети, сопротивления цепи обмотки ротора. 5.4. Механическая характеристика асинхронного двигателя. Влияние вытеснения тока в обмотке ротора и насыщения магнитной цепи на величину пускового момента. 5.5. Рабочие характеристики асинхронного двигателя и расчет их по Т – образной схеме замещения. 5.6. Пуск асинхронных двигателей: общая характеристика процесса пуска, способы пуска короткозамкнутых двигателей, пуск двигателей с фазным ротором, асинхронные короткозамкнутые двигатели с улучшенными пусковыми свойствами. 5.7. Регулирование угловой скорости асинхронных двигателей, общая характеристика и сравнение способов регулирования. Частотное управление асинхронными двигателями: особенности частотного управления, законы одновременного регулирования частоты и напряжения питания, способы реализации. Электрическое торможение асинхронного двигателя. 5.8. Однофазный асинхронный двигатель: принцип действия, характеристики, способы пуска Раздел 6. Синхронные машины. 6.1. Принцип действия и устройство синхронных машин. Конструкция явнополюсных и неявнополюсных синхронных машин. 6.2. Работа синхронного генератора при холостом ходе и при нагрузке. Реакция якоря в неявнополюсной машине. Векторная диаграмма неявнополюсного синхронного генератора при симметричной смешанной нагрузке. 6.3. Теория рабочего процесса явнополюсной синхронной машины: метод двух реакций,

No	Тематика лекционных занятий / краткое содержание			
Π/Π	тематика лекционных занятии / краткое содержание			
	разложение МДС якоря на продольную и поперечную составляющие, приведение МДС и токов к условиям возбуждения.			
6.4. Характеристики синхронных генераторов при автономной работе, а именно, характерихолостого хода, установившегося короткого замыкания, внешняя, регулировочная.				
	6.5. Параллельная работа синхронных генераторов: способы включения на параллельную работу с сетью, регулирование активной и реактивной нагрузки при параллельной работе.			
6.6. Электромагнитный момент синхронной машины. Угловая характеристика синхронной при параллельной работе с сетью большой мощности. Статическая устойчивость синхронн				
	машин. 6.7. Синхронный двигатель: векторные диаграммы, рабочие характеристики, способы пуска.			
7	Раздел 7. Основы электропривода.			
	7.1. Основные понятия электропривода. Структурная схема электропривода. Механические характеристики производственных механизмов.			
	7.2. Уравнение движения электропривода. Классификация режимов работы электроприводов. Выбор мощности и типа двигателей с учетом их режима работы.			
8	Допуск к экзамену			
9	Экзамен			

4.2. Занятия семинарского типа.

Лабораторные работы

№ п/п	Наименование лабораторных работ / краткое содержание
1	Исследование однофазного трансформатора.
2	Исследование трехфазного асинхронного двигателя с короткозамкнутым ротором.

Практические занятия

	прикти пеские запитии		
№ п/п	Тематика практических занятий/краткое содержание		
1	Работа с технической и справочной литературой, базами данных, информационно-		
	справочными и поисковыми системами.		
2	Трансформаторы. Выполнение курсовой работы.		
3	Вопросы теории электрических машин переменного тока Самостоятельное изучение отдельных тем разделов учебной дисциплины. Работа с технической и справочной литературой, базами данных, информационно-справочными и поисковыми. Выполнение лабораторной работы. [1] стр.5-54 [6] стр.3-18 Подготовка к электронному тестированию.		
4	Асинхронные машины Изучение и конспектирование отдельных тем учебной литературы, связанных с разделом, выполнение лабораторной работы [1] стр.183-277 [6] стр.19-42		
5	Основы электропривода Работа с технической и справочной литературой, базами данных, информационно-справочными и поисковыми системами. Работа на ПЗ.[1] стр.183-277 [6] стр.3-32 [8] стр.5-72		

4.3. Самостоятельная работа обучающихся.

№	Вид самостоятельной работы			
Π/Π	вид самостоятельной работы			
1	Работа с теоретичеким (лекционным) материалом.			
2	Подготовка к практическим занятиям.			
3	Подготовка к лабораторным занятиям.			
4	Самостоятельное изучение разделов (тем) дисциплины(модуля); работа с			
	литературой.			
5	Прохождение электронного курса и выполнение заданий			
6	Выполнение курсовой работы.			
7	Подготовка к промежуточной аттестации.			

4.4. Примерный перечень тем курсовых работ

Студентам требуется выполнить курсовую работу «Расчет маломощного трансформатора с воздушным охлаждением» по заданию в соответствии с методическими указаниями [3].

Курсовая работа должна быть оформлена в виде расчетной записки, выполненной на листах бумаги формата A4, сброшюрованной и снабженной титульным листом. Эскизы, графики и диаграммы выполняются на миллиметровой бумаге также формата A4.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

No	Библиографическое описание	Место доступа
п/п	2	1,10010 A001911
1	Электрические машины в 2 т. Том 1 / И. П. Копылов. —	https://urait.ru/bcode/537617
	2-е изд., испр. и доп. Учебник Москва: Издательство	(дата обращения:
	Юрайт, 2024. — 267 с. — (Высшее образование)., 2024	10.02.2024). ISBN 978-5-
		534-03222-2. — Текст:
		электронный //
		Образовательная
		платформа Юрайт [сайт].
2	Электрические машины и трансформаторы / В. М.	https://urait.ru/bcode/490137
	Игнатович, Ш. С. Ройз. — 6-е изд., испр. и доп. Учебное	(дата обращения:
	пособие — Москва : Издательство Юрайт, 2022. — 181	10.02.2024).
	с. — (Высшее образование). — ISBN 978-5-534-00881-4.	
	— Текст: электронный // Образовательная платформа	
	Юрайт [сайт]., 2024	
3	Электрический привод / Л. П. Шичков. — 3-е изд.,	https://urait.ru/bcode/538718
	перераб. и доп. Учебник — Москва : Издательство	(дата обращения:
	Юрайт, 2024. — 355 с. — (Высшее образование). —	10.02.2024).

ISBN 978-5-534-17665-0. — Текст : электронный // Образовательная платформа Юрайт , 2024

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО - ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ "ИНТЕРНЕТ", НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

- 1. Официальный сайт МИИТ http://miit.ru/
- 2. Электронно-библиотечная система POAT http://www.biblioteka.rgotups.ru/
- 3. Электронно-библиотечная система Научно-технической библиотеки МИИТ http://library.miit.ru/
- 4. Электронно-библиотечная система издательства «Лань» http://e.lanbook.com/
- 5. Электронно-библиотечная система «ЮРАЙТ» http://www.biblio-online.ru/
- 6. Электронно-библиотечная система «ZNANIUM.COM» http://www.znanium.com/
- 7. Перечень современных профессиональных баз данных и информационных справочных систем http://sdo.roat-rut.ru
- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Все необходимые для изучения дисциплины учебно-методические материалы объединены в Учебно-методический комплекс и размещены на сайте университета.

- Программное обеспечение для подготовки отчетов включает в себя программное обеспечение, а также программные продукты общего применения
- Программное обеспечение для проведения лекций, демонстрации презентаций и ведения интерактивных занятий.

- Программное обеспечение, необходимое для оформления отчетов и иной документациие.
- Программное обеспечение для выполнения текущего контроля успеваемости: Браузер Internet Explorer.

Учебно-методические издания в эектронном виде.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

ОПИСАНИЕ МАТЕРИАЛЬНО - ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Перечень лабораторного оборудования Универсальный лабораторный стенд НТЦ 23.100 "Электрические машины и трансформаторы"

Требования к аудиториям (помещениям, кабинетам) для проведения занятий с указанием соответствующего оснащения

Учебная аудитория для проведения занятий соответствует требованиям охраны труда по освещенности, количеству рабочих (посадочных) мест студентов, а также соответствует условиям пожарной безопасности.

Учебные лаборатории и кабинеты оснащены необходимым лабораторным оборудованием, приборами и расходными материалами, обеспечивающими проведение предусмотренного учебным планом лабораторного практикума по дисциплине.

Кабинеты оснащены следующим оборудованием, приборами и расходными материалами, обеспечивающими проведение предусмотренных учебным планом занятий по дисциплине:

-для проведения лекций, демонстрации презентаций и ведения интерактивных занятий: переносной проектор и переносной компьютер или интерактивная доска.

- для выполнения текущего контроля успеваемости: учебная аудитория для проведения занятий;
- для проведения лабораторных работ: лаборатория "Электрические машины" с лабораторными стендами НТЦ-23.100;
- для организации самостоятельной работы студентов: учебная аудитория, оснащенная компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечением доступа в электронную информационную среду.

9. Форма промежуточной аттестации:

Курсовая работа в 3 семестре. Экзамен в 3 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент, к.н. кафедры «Электрификация и электроснабжение»

А.П. Чехов

Согласовано:

Заведующий кафедрой ЭЭ РОАТ

В.А. Бугреев

Председатель учебно-методической

комиссии С.Н. Климов