МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 13.03.02 Электроэнергетика и электротехника, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Электрические машины

Направление подготовки: 13.03.02 Электроэнергетика и электротехника

Направленность (профиль): Интеллектуальные электротехнические

транспортные системы

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5214

Подписал: заведующий кафедрой Пудовиков Олег

Евгеньевич

Дата: 04.05.2025

1. Общие сведения о дисциплине (модуле).

Целями освоения учебной дисциплины (модуля) «Электрические машины» являются:

- формирование у студентов знаний конструкции, принципа работы, процессов и характеристик, экспериментальных исследований и эксплуатаци электрических машин.

Задачами освоения учебной дисциплины (модуля) «Электрические машины» являются:

- освоение методов и способов проектирования электрических машин, которые необходимы для изучения специальных дисциплин.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-4** Способен использовать методы анализа и моделирования электрических цепей и электрических машин;
- **ПК-4** Способен применять современные методы разработки технического, информационного и алгоритмического и программного обеспечения интеллектуальных систем управления электротехническими комплексами.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

Знать основы теории электромеханического преобразования энергии и физические основы работы электрических машин.

Уметь:

Уметь применять, эксплуатировать электрические машины

Владеть:

Владеть методами анализа режимов работы электроэнергетического и электротехнического оборудования и систем; методами расчета параметров электроэнергетических устройств и электроустановок.

Знать:

Виды электрических машин и их основные характеристики; эксплуатационные требования к различным видам электрических машин.

Уметь:

Уметь производить выбор электрических машин.

Владеть:

Владеть методами расчета, проектирования и конструирования электроэнергетического и электротехнического оборудования и систем.

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип инобилу золатий	Количество часов	
Тип учебных занятий		Семестр №4
Контактная работа при проведении учебных занятий (всего):	80	80
В том числе:		
Занятия лекционного типа	48	48
Занятия семинарского типа	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 28 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

No	
Π/Π	Тематика лекционных занятий / краткое содержание
1	Физические основы электромеханического преобразования энергии Упрощенная модель индуктивной электрической машины. Основные элементы и принимаемые допущения. Электрическая машина — определение. Энергоносители. Закон электромагнитной индукции (по Фарадею). Правило правой руки. Формулировка для контура по Максвеллу. Закон электромагнитного взаимодействия. Правило левой руки. Формулировка для ферромагнитных тел. Упрощенная модель индуктивной электрической машины. Основные элементы и принимаемые допущения.
2	Механизм электромашинного преобразования энергии. Механизм электромашинного преобразования энергии. Условие однонаправленного преобразования энергии. Фундаментальные принципы функционирования электрических машин. Ток в обмотке возбуждения. Элементарная трубка магнитного потока. Распределение магнитной энергии. Распределение индукции по поверхности ротора. Понятие о северном и южном полюсах машины. Преобразование механической энергии в электрическую (кратко). Общая схема преобразования энергии. Механическая мощность, механический момент на валу. Энергия магнитного поля в зазоре. ЭДС обмоток якоря и возбуждения, ЭДС холостого хода якоря. Напряжения на зажимах обмоток. Суммарная мощность обмоток, ее разделение на мощность потерь, мощность изменения магнитного поля (реактивную) и электромагнитную мощность. Электромагнитный момент, его связь с механическим и частотой вращения. Условие однонаправленного преобразования энергии и средства его достижения. Энергоприток и энергоотток. Принцип обратимости машины. Принцип саморегулирования.
3	Устройство и конструктивная структура электрических машин постоянного тока. Принцип действия Упрощенная структура электрической машины постоянного тока — описание конструкции. Генераторный режим работы — Общая схема, взаимное расположения якоря и полюсов — ЭДС вращения — ЭДС якоря, ее направление, ЭДС на щетках, ее «выпрямление» — коммутация — схема моментов и ЭДС — уравнение напряжения якоря — силы, действующие на проводники обмотки якоря, электромагнитный момент — моменты, действующие на якорь, баланс моментов Двигательный режим работы — схема, электромагнитные силы и моменты — ЭДС якоря — уравнение напряжения якоря — моменты, действующие на якорь, баланс моментов — схема моментов и ЭДС — электромагнитная мощность Параллельное рассмотрение двух режимов — связь электромагнитной мощность с электрическими мощностями цепи якоря — переход от уравнений моментов к уравнениям мощностей Потери энергии и КПД машин постоянного тока Механическая мощность — определяющий фактор преобразования
4	Механическая мощность — определяющии фактор преобразования Генераторы постоянного тока Общие сведения о генераторах постоянного тока. Классификация генераторов по способу возбуждения. Основные параметры и характеристики генераторов постоянного тока. Генераторы независимого возбуждения (электрическая схема, характеристика холостого хода, внешняя и регулировочная характеристики). Условия самовозбуждения генераторов. Генераторы параллельного возбуждения (электрическая схема, характеристика холостого хода, внешняя и регулировочная

	Тематика лекционных занятий / краткое содержание арактеристики). Генераторы последовательного возбуждения (электрическая схема, внешняя		
	тапактапистики). Ганараторы поспалоратан ного розбуждания (элактринаская судма, внанняя		
X	сарактеристики). Генераторы последовательного возоуждения (электрическая схема, внешняя карактеристика схема, внешняя и регулировочная характеристики).		
	Двигатели постоянного тока		
- r	Общие сведения о двигателях постоянного тока. Основные параметры и характеристики двигат		
п	юстоянного тока. Двигатели параллельного возбуждения (электрическая схема, рабочая,		
	механическая и скоростная характеристики). Двигатели последовательного возбуждения		
1 `	(электрическая схема, рабочая, механическая и скоростная характеристики). Двигатели незавивозбуждения (кратко).		
	Туск и регулирование частоты вращения двигателей постоянного тока		
	Способы пуска двигателя постоянного тока в работу. Прямое включение двигателя в сеть. Реос		
	туск. Пуск при пониженном напряжении на якоре. Способы регулирования частоты вращения		
	двигателя постоянного тока. Дополнительное сопротивление в цепи якоря. Регулирование магнитного		
п	потока. Регулирование напряжения на якоре (система генератор-двигатель; применение		
I -	регулируемого трансформатора при питании от сети переменного тока; применение управляемого		
	выпрямителя при питании от сети переменного тока; применение импульсного прерывателя		
	остоянного напряжения) Грансформаторы. Основные сведения		
	рансформаторы. Основные сведения Основные сведения о трансформаторах. Конструкция, принцип действия и электромагнитные		
	процессы. Математическая модель электромагнитных процессов. Приведение вторичной обмотки к		
	первичной. Математическая модель приведенного трансформатора)		
	Схема замещения и энергетические диаграммы трансформатора		
	Определение вида и параметров схемы замещения двухобмоточного трансформатора. Опыты		
	солостого хода и короткого замыкания (схемы замещения и определяемые параметры). Потери		
Э	нергии в трансформаторе. Энергетические диаграммы. КПД трансформатора.		
	Работа трансформатора под нагрузкой		
	Ризические условия работы трансформатора. Векторные диаграммы трансформатора при активно-		
	индуктивной и активно-емкостной нагрузках. Регулирование напряжения трансформатора.		
	Параллельная работа трансформаторов		
	Параллельная работа двухобмоточных трансформаторов. Условия параллельной работы		
	рансформаторов. Параллельная работа трансформаторов неодинаковых групп соединения обмоток. Тараллельная работа трансформаторов с неодинаковыми коэффициентами трансформации.		
	Параллельная работа трансформаторов с неодинаковыми коэффициентами трансформации. Тараллельная работа трансформаторов с неодинаковыми напряжениями короткого замыкания.		
	Асинхронные электрические машины. Основные сведения		
	Основные сведения об асинхронных машинах. Конструкция, принцип действия и электромагнитные		
	процессы. Скольжение асинхронной машины и зависимость режимов работы от него. Математическая		
M	иодель электромагнитных процессов.		
	Схема замещения и энергетические диаграммы асинхронной электрической машины		
	Триведение параметров обмотки ротора к обмотке статора. Схема замещения асинхронной машины.		
	Энергетические диаграммы асинхронной машины для двигательного и генераторного режимов. КПД		
	асинхронной машины.		
	Основные параметры и характеристики асинхронных двигателей		
	Электромагнитные моменты и характеристики асинхронной машины. Рабочие характеристики		
	синхронного двигателя. Механическая характеристика асинхронного двигателя.		
	Туск и регулирование частоты вращения асинхронных двигателей		
	Способы пуска асинхронного двигателя в работу. Прямое включение двигателя в сеть. Реакторный пуск асинхронного двигателя. Автотрансформаторный пуск асинхронного двигателя. Способы		
	нуск асинхронного двигателя. Автогрансформаторный пуск асинхронного двигателя. Спосооы регулирования частоты вращения асинхронного двигателя с короткозамкнутым ротором.		
_	Регулирования за счет изменения частоты питающего напряжения. Регулирование путем изменения		
	писла пар полюсов. Регулирование за счет изменения напряжения. Импульсное регулирование.		

№ п/п	Тематика лекционных занятий / краткое содержание
15	Синхронные электрические машины. Основные сведения
	Основные сведения о синхронных машинах. Магнитное поле и электромагнитные поля обмоток
	возбуждения и якоря. Приведение электромагнитных величин и параметров обмоток синхронных
	машин.
16	Синхронные генераторы.
	Математическая модель процессов в синхронном генераторе. Векторные диаграммы синхронных
	генераторов. Характеристики синхронных генераторов (нагрузочные, внешние, регулировочные).
17	Синхронные двигатели.
	Математическая модель процессов в синхронном двигателе. Векторные диаграммы синхронного
	двигателя. Рабочие характеристики синхронного двигателя.

4.2. Занятия семинарского типа.

Практические занятия

3.0	-		
№ п/п	Тематика практических занятий/краткое содержание		
1	Законы электромагнитной индукции и электромагнитного взаимодействия		
	Решение задач по расчету ЭДС, индуцируемой в проводнике, а так же сил, действующих на		
	проводник с током.		
2	Расчет параметров генераторов постоянного тока.		
	Решение задач по расчету параметров генераторов постоянного тока (ЭДС якоря, ток якоря,		
	напряжение на зажимах)		
3	Расчет параметров двигателей постоянного тока.		
	Решение задач по расчету параметров двигателей постоянного тока (ток якоря, момент на валу,		
	частота вращения)		
4	Расчет характеристик генераторов постоянного тока с независимым возбуждением.		
	Решение задач по расчету и построению внешней и регулировочной характеристик генератора		
	постоянного тока с независимым возбуждением.		
5	Расчет характеристик генераторов постоянного тока с параллельным возбуждением.		
	Решение задач по расчету и построению внешней и регулировочной характеристик генератора		
-	постоянного тока с параллельным возбуждением.		
6	Расчет характеристик генераторов постоянного тока со смешанным возбуждением		
	Решение задач по расчету и построению внешней и регулировочной характеристик генератора		
_	постоянного тока со смешанным возбуждением.		
7	Расчет характеристик двигателей постоянного тока с параллельным возбуждением.		
	Решение задач по расчету и построению скоростной и механической характеристик двигателя		
	постоянного тока с параллельным возбуждением.		
8	Расчет характеристик двигателей постоянного тока с последовательным		
	возбуждением.		
	Решение задач по расчету и построению скоростной и механической характеристик двигателя		
	постоянного тока с последовательным возбуждением.		
9	Пусковые диаграммы двигателя постоянного тока. Решение задач по расчету и		
	построению пусковых диаграмм двигателя постоянного тока при реостатном пуске.		
	Решение задач по расчету и построению пусковых диаграмм двигателя постоянного тока при		
	реостатном пуске.		
10	Определение основных параметров трансформатора.		
	Решение задач по расчету параметров двухобмоточных трансформаторов (напряжения и токи		

№ п/п	Тематика практических занятий/краткое содержание	
	обмоток, коэффициент трансформации)	
11	Определение параметров схемы за1мещения трансформатора.	
	Решение задач по расчету параметров схемы замещения двухобмоточного трансформатора на основе	
	данных опытов холостого хода и короткого замыкания	
12	Энергетические диаграммы трансформатора.	
	Решение задач по построению энергетических диаграмм двухобмоточного трансформатора, а так же определению его КПД.	
13	Работа трансформатора под нагрузкой.	
	Решение задач по построению векторных диаграмм двухобмоточного трансформатора при работе с активно-индуктивной и активно-емкостной нагрузкой.	
14	Определение основных параметров асинхронных электрических машин.	
	Решение задач по расчету параметров асинхронных электрических машин (напряжения и токи обмоток ротора и статора, скольжение).	
15	Определение параметров схемы асинхронных электрических машин.	
	Решение задач по расчету параметров Т-образной схемы замещения асинхронных электрических	
	машин.	
16	Механические характеристики асинхронного двигателя	
	Решение задач по расчету и построению механическмх характеристик асинхронного двигателя.	
17	Определение основных параметров синхронных электрических машин.	
	Решение задач по расчету и построению рабочих характеристик синхронных электрических машин.	

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Подготовка к лабораторным работам.
2	Работа с литературой.
3	Подготовка к промежуточной аттестации.
4	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Электрические машины. Введение в электромеханику.	НТБ (фб.); НТБ (чз.2)
	Машины постоянного тока и трансформаторы А.И.	
	Вольдек, В.С. Попов Однотомное издание "Питер", 2008	
2	Проектирование трансформаторов для питания устройств	НТБ (уч.3); НТБ (фб.);
	автоматики, телемеханики и микропроцессорных систем	НТБ (чз.2)
	М.Д. Глущенко, Е.В. Васильев, А.А. Реморов, П.П.	
	Смазнов; МИИТ. Каф. "Электрические машины"	
	Однотомное издание МИИТ, 2004	
3	Расчет трансформаторов П.М. Тихомиров Однотомное	НТБ (фб.)

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

http://library.miit.ru/ - электронно-библиотечная система научно-технической библиотеки МИИТ.

http://rzd.ru/ - сайт ОАО «РЖД».

http://elibrary.ru/ - научная электронная библиотека.

Поисковые системы: Yandex, Rambler, Mail

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Для выполнения расчетной части курсовой работы необходимы программы Microsoft Excel и/или MathCad.

Для создания эскизов устройства, рассчитанного в курсовой работе, требуется программа «Компас».

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

натурные образцы электрических машин учебные плакаты электрических машин

чертежи серийно выпускаемых электрических машин

компьютерный класс с ЭВМ, подключенными к сетям INTERNET и INTRANET

9. Форма промежуточной аттестации:

Зачет в 4 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, к.н. кафедры «Электропоезда

и локомотивы» И.И. Гарбузов

Согласовано:

Заведующий кафедрой УиЗИ Л.А. Баранов

Заведующий кафедрой ЭиЛ О.Е. Пудовиков

С.В. Володин

Председатель учебно-методической

комиссии С.В. Володин