МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности 23.05.03 Подвижной состав железных дорог, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Электрические машины

Специальность: 23.05.03 Подвижной состав железных дорог

Специализация: Пассажирские вагоны

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5214

Подписал: заведующий кафедрой Пудовиков Олег

Евгеньевич

Дата: 14.10.2025

1. Общие сведения о дисциплине (модуле).

Целями освоения учебной дисциплины "Электрические машины" являются: формирование у студентов знаний конструкции, принципа работы, процессов и характеристик, экспериментальных исследований и эксплуатации электрических машин, а также методов и способов проектирования электроприводов

Задачами освоения дисциплины "Электрические машины" дисциплины являются: изучение основ теории электромеханического преобразования энергии и физических основ работы электрических машин; изучение видов электрических машин и их основных характеристик; изучение эксплуатационных требований к различным видам электрических машин; формирование умений применения, эксплуатации и выбора электрических машин; овладение методами анализа режимов работы электроэнергетического и электротехнического оборудования, методами расчета параметров и проектирования электроприводов.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ОПК-1 - Способен решать инженерные задачи в профессиональной деятельности с использованием методов естественных наук, математического анализа и моделирования.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

теорию электромеханических преобразователей, правильно представлять принцип их действия, теорию и конструкцию электрических машин постоянного и переменного тока, трансформаторов

Уметь:

выполнять расчёт и проектирование электрических машин, организовывать их техническое обслуживание и диагностику

Владеть:

способов навыками определения параметров И управления электрическими машинами; формировать И применять технические устройства электроподвижном составе (тяговые электродвигатели, на трансформаторы) с помощью электромеханических преобразователей

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 5 з.е. (180 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

		Количество часов		
Тип учебных занятий	Всего	Семестр		
		№5	№6	
Контактная работа при проведении учебных занятий (всего):	112	48	64	
В том числе:				
Занятия лекционного типа	64	32	32	
Занятия семинарского типа	48	16	32	

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 68 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№ п/п	Тематика лекционных занятий / краткое содержание	
1	Основополагающие законы и фундаментальные принципы электромеханического	
	преобразования энергии.	
	Физические основы электромеханического преобразования энергии. Электрическая машина и	

№ π/π	Тематика лекционных занятий / краткое содержание		
11/11	основные физические процессы в ее конструктивных элементах.		
2	Электрические машины постоянного тока Устройство и принцип действия электрических машин постоянного тока. Генераторы постоянного тока. Двигатели постоянного тока.		
3	Трансформаторы Основные сведения о трансформаторах. Работа трансформатора под нагрузкой.		
4	Электрические машины переменного тока Общие вопросы теории электрических машин переменного тока		
5	Асинхронные электрические машины Основы теории асинхронных машин. Электромагнитные моменты и характеристики асинхронной машины. Особые виды и режимы работы асинхронных машин		
6	Синхронные электрические машины Синхронные генераторы. Синхронные двигатели и компенсаторы. Особенности нагревания и охлаждения электрических машин		
7	Понятие, классификация и структурная схема электропривода Определение понятия электропривод. Классификация электроприводов. Структурная схема электропривода.		
8	Механика электропривода Приведение моментов сопротивления к валу электродвигателя. Механические характеристики рабочих машин и электродвигателей. Уравнение движения электропривода.		
9	Динамика электропривода Понятие механических переходных процессов. Понятие электромагнитных переходных процессов. Электромеханическая постоянная времени. Динамическая устойчивость электропривода		
10	Регулирование скорости асинхронного двигателя Понятие координаты. Регулируемые координаты приводов. Основные показатели регулирования скорости электроприводов. Регулирование скорости асинхронного двигателя изменением числа пар полюсов. Частотное регулирование скорости асинхронного двигателя.		
11	Аппаратура управления электроприводом Назначение, устройство, принцип действия, выбор контакторов, промежуточных реле, выбор реле времени. Назначение, устройство, принцип действия микроконтроллеров. Назначение, устройство, принцип действия, выбор программируемых логических контроллеров.		
12	Определение мощности электродвигателя Факторы, влияющие на выбор мощности электродвигателя. Классы нагревостойкости изоляции. Нагрузочные диаграммы механизма и электропривода. Уравнение теплового баланса электродвигателя. Кривые нагрева и охлаждения электродвигателя.		
13	Аппаратура защиты электропривода Назначение, устройство, принцип действия и выбор предохранителей, выбор тепловых реле, выбор реле максимального тока, выбор автоматических выключателей.		
14	Расчет мощности электропривода Классификация режимов работы электроприводов. Характеристики режимов работы S1-S8. Метод средних потерь. Метод эквивалентного тока, момента, мощности. Расчет мощности двигателя в режиме S1		

4.2. Занятия семинарского типа.

Лабораторные работы

№ п/п	Наименование лабораторных работ / краткое содержание		
11/11	Исследование генераторов постоянного тока с независимым возбуждением.		
1	Экспериментальное определение характеристик генератора постоянного тока независимого возбуждения.		
2	Исследование генераторов постоянного тока с параллельным возбуждением.		
	Исследование генераторов постоянного тока с параллельным возбуждением.		
	Экспериментальное определение характеристик генератора постоянного тока параллельного возбуждения		
3	Исследование двигателей постоянного тока с параллельным возбуждением.		
	Экспериментальное определение характеристик двигателя постоянного тока параллельного возбуждения.		
4	Исследование двигателей постоянного тока с последовательным возбуждением.		
	Экспериментальное определение характеристик двигателя постоянного тока последовательного возбуждения		
5	Исследование трансформатора		
	Экспериментальное определение параметров схемы замещения и расчет характеристик однофазного трансформатора.		
6	Определение группы соединений трансформаторов		
	Экспериментальное определение группы соединений трансформатора.		
7	Исследование индукционного регулятора		
	Экспериментальное определение характеристик трехфазного индукционного регулятора напряжения и		
	фазорегулятора		
8	Исследование асинхронного электродвигателя		
	Экспериментальное определение характеристик асинхронного двигателя с короткозамкнутым ротором		
	при питании от сети переменного тока частотой 50 Гц		
9	Частотное управление асинхронным электродвигателем		
	Экспериментальное определение характеристик асинхронного двигателя с короткозамкнутым ротором		
1.0	при питании от преобразователя частоты.		
10	Исследование синхронного генератора		
	Экспериментальное определение характеристик синхронного генератора, работающего на		
	автономную нагрузку.		

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Работа с лекционным материалом
2	Подготовка к лабораторным работам
3	Выполнение курсовой работы.
4	Подготовка к промежуточной аттестации.
5	Подготовка к текущему контролю.

4.4. Примерный перечень тем курсовых работ

Расчет маломощного трех обмоточного трансформатора, питающегося от сети 50 Гц. Выбор типа сердечника: пластинчатого или ленточного.

Расчет

обмоток трансформатора. Представить эскиз сердечника трансформатора и

принципиальную электрическую схему трансформатора

Варианты.

- 1. U1=220 B, S2=20 B*A, U2=12 B, cos?2=0.85, S3=15 B*A, U3=12 B, cos?3=0.95, тип сердечника ленточный.
- 2. U1=127 B, S2=20 B*A, U2=12 B, cos?2=0.85, S3=25 B*A, U3=15 B, cos?3=0.95, тип сердечника ленточный.
- 3. U1=220 B, S2=20 B*A, U2=12 B, cos?2=0.85, S3=25 B*A, U3=18 B, cos?3=0.90, тип сердечника ленточный.
- 4. U1=127 B, S2=20 B*A, U2=12 B, cos?2=0.85, S3=35 B*A, U3=15 B, cos?3=0.95, тип сердечника ленточный.
- 5. U1=220 B, S2=20 B*A, U2=12 B, cos?2=0.85, S3=35 B*A, U3=18 B, cos?3=0.90, тип сердечника ленточный.
- 6. U1=127 B, S2=30 B*A, U2=24 B, cos?2=0.85, S3=15 B*A, U3=12 B, cos?3=0.95, тип сердечника пластинчатый.
- 7. U1=220 B, S2=30 B*A, U2=24 B, cos?2=0.85, S3=25 B*A, U3=15 B, cos?3=0.95, тип сердечника пластинчатый.
- 8. U1=127 B, S2=30 B*A, U2=24 B, cos?2=0.85, S3=25 B*A, U3=18 B, cos?3=0.90, тип сердечника пластинчатый.
- 9. U1=220 B, S2=30 B*A, U2=24 B, cos?2=0.85, S3=35 B*A, U3=15 B, cos?3=0.95, тип сердечника пластинчатый.
 - 10. U1=127 B, S2=30 B*A, U2=24 B, cos?2=0.85, S3=35 B*A, U3=18 B,

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Электрические машины Д.Э. Брускин, А.Е. Зорохович, В.С. Хвостов Однотомное издание Высшая школа, 1987	НТБ (уч.3)
2	Основы преобразования энергии в электромеханических системах В.А.Винокуров; МИИТ. Каф. "Электрические машины" Однотомное издание МИИТ, 2001	НТБ (уч.3); НТБ (фб.); НТБ (чз.1); НТБ (чз.2); НТБ (чз.4)
3	Электрические машины железнодорожного транспорта В.А. Винокуров, Д.А. Попов Однотомное издание Транспорт, 1986	НТБ (уч.3); НТБ (уч.4); НТБ (уч.6); НТБ (фб.)
4	Зарандия, Ж. А. Электрические машины и основы электропривода. Задачи и примеры: практикум: учебное пособие / Ж. А. Зарандия, А. В. Кобелев. — Тамбов: ТГТУ, 2022. — 79 с. — ISBN 978-5-8265-2469-5. — Текст: электронный https://e.lanbook.com/book/355136 // Лань: электронно-библиотечная система	https://e.lanbook.com/book/355136 (дата обращения: 14.06.2025). — Режим доступа: для авториз. пользователей.
5	Константинов, Г. Г. Синхронные машины и машины постоянного тока: курс лекций: учебное пособие / Г. Г. Константинов. — Иркутск: ИРНИТУ, 2021. — 136 с. — Текст: электронный https://e.lanbook.com/book/325376 // Лань: электронно-библиотечная система	https://e.lanbook.com/book/325376 (дата обращения: 14.06.2025). — Режим доступа: для авториз. пользователей.
6	Константинов, Г. Г. Трансформаторы и асинхронные машины: курс лекций: учебное пособие / Г. Г. Константинов. — Иркутск: ИРНИТУ, 2021. — 140 с. — Текст: электронный	https://e.lanbook.com/book/325382 (дата обращения: 14.06.2025). — Режим доступа: для авториз. пользователей.

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Научно-техническая библиотека РУТ (МИИТ) (http://library.miit.ru).

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Специализированные программные модули Autocad, Mathcad, Comsol. Программное обеспечение, разработанное на кафедре «Электропоезда и локомотивы» РУТ (МИИТ).

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Используется мультимедийная аудитория и компьютерный класс.

Учебная лаборатория электрические машины постоянного тока с комплектом специализированных стендов и установок.

Учебная лаборатория электрические машины переменного тока с комплектом специализированных стендов и установок.

9. Форма промежуточной аттестации:

Зачет в 5, 6 семестрах.

Курсовая работа в 6 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

В.А. Шаров

Согласовано:

Заведующий кафедрой ВВХ Г.И. Петров

Заведующий кафедрой ЭиЛ О.Е. Пудовиков

Председатель учебно-методической

комиссии С.В. Володин