#### МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

#### ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

# «РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)



Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности 23.05.03 Подвижной состав железных дорог, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

### РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

#### Электрическое оборудование и автоматизация тепловозов

Специальность: 23.05.03 Подвижной состав железных дорог

Специализация: Локомотивы

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5214

Подписал: заведующий кафедрой Пудовиков Олег

Евгеньевич

Дата: 24.06.2025

#### 1. Общие сведения о дисциплине (модуле).

Целями освоения учебной дисциплины «Электрическое оборудование и автоматизация локомотивов» являются изучение студентами методов разработки, эксплуатации и обслуживания электрического оборудования, электрических схем современных и перспективных магистральных, маневровых и промышленных локомотивов с электрической передачей. Основной целью изучения учебной дисциплины «Электрическое оборудование и автоматизация локомотивов» является формирование у обучающегося компетенций в области работы, ремонта и обслуживания электрооборудования ТЯГОВОГО вспомогательного локомотивов, необходимых при эксплуатации, техническом обслуживании, проектировании, производстве, испытаниях, модернизации автономного тягового подвижного состава, а также при разработке средств и путей повышения эксплуатационных и ремонтных характеристик (экономичности, надёжности, долговечности) тягового подвижного состава для следующих задач профессиональной деятельности:

производственно-технологической; организационно-управленческой; проектно-конструкторской; научно-исследовательской.

Дисциплина предназначена для получения знаний для решения следующих профессиональных задач (в соответствии с видами деятельности):

производственно-технологическая: - использование типовых методов расчёта электрооборудования подвижного состава; анализа взаимодействия тягового и вспомогательного оборудования; определение неисправностей электрооборудования; технического контроля и испытаний;

организационно-управленческая деятельность: оценка производственных и непроизводственных затрат ИЛИ ресурсов нормальную эксплуатацию; обслуживание текущее техническое электрооборудования; менеджмент управления техническим обслуживанием электрооборудования; требования к материально-техническому обеспечению предприятия для решения производственных задач;

проектно-конструкторская деятельность: - разработка технических требований; технических заданий и технических условий на проекты модернизации электрооборудования подвижного состава или его электрических схем; организация и обработка результатов испытаний

электрооборудования и электрических схем локомотивов с использованием средств автоматизации и информационных технологий;

научно-исследовательская выполнение деятельность: научных исследований в области эксплуатации и производства электрооборудования и электрических схем локомотивов; моделирование режимов работы тягового и вспомогательного электрооборудования в процессе эксплуатации для прогнозирования его работоспособности и обеспечения требуемых тяговых характеристик; поиск и проверка новых технических решений совершенствованию конструкции и эксплуатационных характеристик электрооборудования локомотивов; разработки планов, программ и методик проведения исследований работы электрооборудования и электрических схем, анализ их результатов.

#### 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

**ПК-9** - Имеет навык выполнять обоснование параметров конструкций и систем тягового подвижного состава.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

#### Знать:

- особенности применения математического анализа в инженерных расчётах;
- основные теоремы и положения математической статистики; особенности дискретных моделей; назначение автоматизации работы электрооборудования локомотивов;
- структуру систем управления локомотивов; структуру систем управления тяговым и вспомогательным электрооборудованием локомотивов

#### Уметь:

- использовать методы математического анализа при описании физических процессов в электрических машинах, преобразовательных системах и электрических схемах; использовать статистические модели, законы распределения случайных величин; использовать дискретные модели для анализ
- анализировать работу систем управления электроприводом локомотива; рассчитывать режимы работы тягового электрооборудования и

преобразовательных систем в условиях эксплуатации; определять основные неисправности тягового и вспомогательного электрооборудования; определять неисправности исполнительных схем цепей управления; применять методы моделирования и расчета режимов работы тягового электрооборудования и преобразовательных систем.

#### Владеть:

- методами получения законов распределения случайных величин и их числовых характеристик; оценкой согласованности моделей работы тягового и вспомогательного электрооборудования локомотивов; методами настройки систем регулирования напряжения тягового синхронного генератора и вспомогательного генератора тепловоза; методами проведения технического обслуживания электрооборудования локомотивов; методами выявления неисправностей и определения объема работы по ремонту электрооборудования локомотивов;
- методами оценки единичных и системных отказов тягового и вспомогательного электрооборудования; методами анализа неисправностей алгоритмов работы цепей управления локомотивов; методами планирования и проведения испытаний тягового и вспомогательного электрооборудования и преобразовательных систем; навыками чтения и разработки электрических схем автономных локомотивов;
- навыками определения неисправностей в электрических схемах и настройки элементов электрического оборудования автономных локомотивов навыками настройки электрических схем.
  - 3. Объем дисциплины (модуля).
  - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 6 з.е. (216 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

|                                                           |       | Количество часов |    |  |
|-----------------------------------------------------------|-------|------------------|----|--|
| Тип учебных занятий                                       | Всего | Семестр          |    |  |
|                                                           |       | №8               | №9 |  |
| Контактная работа при проведении учебных занятий (всего): | 112   | 48               | 64 |  |
| В том числе:                                              |       |                  |    |  |
| Занятия лекционного типа                                  | 48    | 16               | 32 |  |

32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации на образовательной программы иных условиях, при промежуточной аттестации составляет 104 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
  - 4. Содержание дисциплины (модуля).
  - 4.1. Занятия лекционного типа.

| №         | Томотичес наминации и роматий / мастиса со наручания                                        |  |  |  |
|-----------|---------------------------------------------------------------------------------------------|--|--|--|
| $\Pi/\Pi$ | Тематика лекционных занятий / краткое содержание                                            |  |  |  |
| 1         | Энергетические и вспомогательные системы тепловозов с тяговым приводом                      |  |  |  |
|           | постоянного тока. Условия эксплуатации и требования, предъявляемые к                        |  |  |  |
|           | электрооборудованию. Источники и потребители электроэнергии на тепловозе                    |  |  |  |
|           | Изучение:                                                                                   |  |  |  |
|           | -Энергетические и вспомогательные системы тепловозов с тяговым приводом постоянного тока    |  |  |  |
|           | -Условия эксплуатации и требования, предъявляемые к электрооборудованию.                    |  |  |  |
|           | -Источники и потребители электроэнергии на тепловозе                                        |  |  |  |
| 2         | Однофазные выпрямительные системы                                                           |  |  |  |
|           | Однополупериодный управляемый и неуправляемый выпрямитель. Управляемый и неуправляемый      |  |  |  |
|           | однофазный мост. Уравнение энергетического равновесия. Диаграммы токов и напряжений. Расчет |  |  |  |
|           | среднего значения выпрямленного напряжения. Коэффициент схемы. Коэффициент пульсаций        |  |  |  |
|           | Значение анодного тоеа. Среднее значение выпрямленного тока.                                |  |  |  |
|           | Выпрямленная мощность. Мощность на нагрузке.                                                |  |  |  |
| 3         | Харектеристики выпрямленного напряжения                                                     |  |  |  |
|           | Гармонический состав выпрямленного напряжения. Постоянная составляющая выпрямленного        |  |  |  |
|           | напряжения. Действующие значения тока и напряжения. А ктивная, реактивная и кажущаяся       |  |  |  |
|           | мощность. Расчет коэффициента пульсаций при любом значении пульсности выпрямленного         |  |  |  |
|           | напряжении                                                                                  |  |  |  |
| 4         | Трехфазные выпрямительные системы.                                                          |  |  |  |
|           | Трехфазный мост. Уравнение энергетического равновесия. Диаграммы токов и напряжений. Расчет |  |  |  |
|           | среднего значения выпрямленного напряжения. Коэффициент схемы. Коэффициент пульсаций        |  |  |  |
|           | Значение анодного тоеа. Среднее значение выпрямленного тока.                                |  |  |  |
|           | Выпрямленная мощность. Мощность на нагрузке.                                                |  |  |  |

| No  |                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| п/п | Тематика лекционных занятий / краткое содержание                                                                                                                                                                                                                                                                                                                  |  |  |
| 5   | Выпрямительная установка тепловоза. Электрическая схема. Конструкция. Быстродействующие плавкие предохранители. Режимы работы выпрямительной установки. Характеристики выпрямительной установки. Режимы работы выпрямительной установки на тепловозе.                                                                                                             |  |  |
| 6   | Аварийные режимы работы энергетической цепи тепловоза                                                                                                                                                                                                                                                                                                             |  |  |
|     | Внутренние и внешние короткие замыкания. Внутренние и внешние короткие замыкания. Методы расчета токов короткого замыкания. Периодическая и апериадическая составляющие тока короткого замыкания. Ударный ток. Ударный коэффициент. Пробой на землю силовой цепи.                                                                                                 |  |  |
| 7   | Системы защиты энергетической системы от аварийных режимов работы. Реле максимального тока. Схемы включения реле максимального тока в силовой цепи и цепи управления. Защита от пробоя на землю. Реле заземления. Схемы включения реле заземления в силовой цепи и цени управления.                                                                               |  |  |
| 8   | Преобразовательные системы на локомотивах                                                                                                                                                                                                                                                                                                                         |  |  |
|     | Инверторы тока и инверторы напряжения. Энергетические системы топловозах с инверторами тока и инверторами напряжения. Диаграммы преобразования и управления напляжением в электроприводе переменного тока с инверторами тока и инверторами напряжения.                                                                                                            |  |  |
| 9   | Однофазный инвертор напряжения при активной и активно-индуктивной нагрузках                                                                                                                                                                                                                                                                                       |  |  |
|     | Назначение обратных диодов и схемы их использования в инверторе. Назначение емкостного накопителя энергии в инверторе. Расчет и построение диаграмм изменения потенциалов на нагрузке. Расчет и построение диаграмм изменения Напряжения и тока на нагрузке                                                                                                       |  |  |
| 10  | Трехфазный инвертор напряжения при активной и активно-индуктивной нагрузках                                                                                                                                                                                                                                                                                       |  |  |
| 10  | Назначение обратных диодов и схемы их использования в инверторе. Назначение емкостного накопителя энергии в инверторе. Расчет и построение диаграмм изменения потенциалов на нагрузке. Расчет и построение диаграмм изменения и тока на нагрузке. Расчет тока нагрузки в системах преобразования энергии.                                                         |  |  |
| 11  |                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 11  | Принципиальная схема. Цифровые датчики. Сигналы управления Модуль Блока регулирования. Модуль центрального процессора. Использомание метода ШИМ в управлении напряжением тягового генератора и вспомогательного генератора. Номиналы напряжений в микропроцессорной системе управления                                                                            |  |  |
| 12  | Алгоритм управления напряжением тягового генератора в микропроцессорной системе управления                                                                                                                                                                                                                                                                        |  |  |
|     | Определение заданной и текошей мощности. Расчет ошибки управления мощности. Алгоритм формирования сигнала заданой мощности. Управление ключами ШИМ напряжения тягового генератора в микропроцессорной системе управления                                                                                                                                          |  |  |
| 13  | Исполнительная схема.<br>Принцип работы входных и выходных блоков дискретных сигналов.                                                                                                                                                                                                                                                                            |  |  |
| 14  | Исполнительная схема управления напряжением тягового и вспомогательного генераторов блоком регелирования в микропроцессорной системе управления. Резервирование системы управления напряжением тягового и вспомогательного генераторов с помощью аналоговой системы управление. Реле РУ16. Схема включения и переход с цифровой системы управления на аналоговую. |  |  |
| 15  | Микропроцессорная система управления тепловоза с поосным регулирования силы тяги                                                                                                                                                                                                                                                                                  |  |  |
|     | Назначение. Принцип управление тяговым электроприводом. Независимый электропривод в микропроцессорной систее управления тепловоза                                                                                                                                                                                                                                 |  |  |
| 16  | Управление тяговыми электродвигателями в микропроцессорной системе                                                                                                                                                                                                                                                                                                |  |  |
|     | управления с поосным регулирования силы тяги.                                                                                                                                                                                                                                                                                                                     |  |  |

| <b>№</b><br>π/π | Тематика лекционных занятий / краткое содержание                                                      |
|-----------------|-------------------------------------------------------------------------------------------------------|
|                 | Принципиальная схема. Определение алгоритма управления ключами силовых управляемых выпрямителпей ТЭД. |
| 17              | Управление тяговыми генератором в микропроцессорной системе управления с                              |
|                 | поосным регулирования силы тяги                                                                       |
|                 | Принципиальная схема. Определение алгоритма управления ключами силовых управляемых                    |
|                 | выпрямителпей ТЭД.                                                                                    |

# 4.2. Занятия семинарского типа.

# Лабораторные работы

| No  |                                                                                                                                                                                                                                                                                                                                                   |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| п/п | Наименование лабораторных работ / краткое содержание                                                                                                                                                                                                                                                                                              |
| 1   | Исследование характеристик однофазного выпрямителя при работе на активную и активно-индуктивную нагрузки Исследование характеристик однофазного управляемого и неуправляемого выпрямителей в приложении Simulink пакета Matlab                                                                                                                    |
| 2   | Исследование характеристик однофазного управляемого и неуправляемого мостов при работе на активную и активно-индуктивную нагрузки Исследование характеристик однофазного управляемого и трехфазного мостов в приложении Simulink пакета Matlab                                                                                                    |
| 3   | Исследование характеристик трехфазного управляемого и неуправляемого мостов при работе на активную и активно-индуктивную нагрузки Исследование характеристик однофазного управляемого и трехфазного мостов в приложении Simulink пакета Matlab                                                                                                    |
| 4   | Расчет параметров выпрямительной установки.  Типы диодов выпрямительной установки. Класс диодов Расчет числа ветвей выпрямительной установки. Расчет диодов выпрямительной установки. Расчет потерь и кпд выпрямительной установки                                                                                                                |
| 5   | Исследование характеристик выпрямительной установки тепловоза при работе на активную и активно-индуктивную нагрузки Исследование характеристик однофазного управляемого и трехфазного мостов в приложении Simulink пакета Matlab                                                                                                                  |
| 6   | Расчет диаграм формирования вращающегося магнитного поля в асинхронном двигателе с помощью инвертора напряжения.  120-градусный и 180-градусный алгоритмы управления напряжением инвертором. Диаграммы коммутаций ключей в инверторах Диаграммы мгновенных потенциалов на нагрузке при 120-градусном и 180-градусном алгоритме управления ключами |
| 7   | Элементная база инверторов.<br>GTO-тиристоры и IJBT-транзисторы. Исполнительный и принципиальные схемы. Условные обозначения. Характеристики. Модули GTO-тиристоров и IJBT-транзисторов. Системы защиты GTO-тиристоров и IJBT-транзисторов в модулях.                                                                                             |
| 8   | Исследование характеристик однофазного инвертора при работе на активную и активно-индуктивную нагрузки Исследование работы однофазного инвертора напряжения в приложении Simulink пакета Matlab                                                                                                                                                   |
| 9   | Исследование характеристик трехфазного инвертора при работе на активную и активно-индуктивную нагрузки Исследование работы трехфазного инвертора напряжения в приложении Simulink пакета Matlab                                                                                                                                                   |

| №<br>п/п | Наименование лабораторных работ / краткое содержание                                    |  |  |
|----------|-----------------------------------------------------------------------------------------|--|--|
| 10       | Управляющая программа микропроцессорной системы управления.                             |  |  |
|          | Измеряемые велицины. Внутренний и внешний цикл прогаммы. Расчет устовок напряжением     |  |  |
|          | тягового и вспомогательного генераторов. Модуль управления системами защиты. Модуль     |  |  |
|          | управления реле переходов. Модули управления ключами ШИМ напряжением тягового и         |  |  |
|          | вспомогательного генераторов.                                                           |  |  |
| 11       | Назначение гальваницеских развязок в в микропроцессорной системе управления.            |  |  |
|          | Трансформаторная и оптоэлектронная гальванические развязки. Модули аналогово-цифровых и |  |  |
|          | цифро-аналоговых преобразователей                                                       |  |  |
| 12       | Модули ключей ШИМ в системах управления напряжением тягового и                          |  |  |
|          | вспомогательного генераторов                                                            |  |  |
|          | Принципиальная исполнительная схема. Система резервирования ключей.                     |  |  |

# Практические занятия

| No  |                                                                                               |  |  |
|-----|-----------------------------------------------------------------------------------------------|--|--|
| п/п | Тематика практических занятий/краткое содержание                                              |  |  |
| 1   | Цепи пуска дизеля                                                                             |  |  |
|     | 1. Включение вспомогательных насосов дизеля                                                   |  |  |
|     | Управление включением топливного насоса. Контактор КТН                                        |  |  |
|     | Управление включением масляного насоса. Контактор КМН.                                        |  |  |
|     | 2. Управление пусковыми контакторами Д1-Д3. Параллельное соединение АБ. Включение АБ на       |  |  |
|     | цепь стартера. Контроль процесса пуска дизеля                                                 |  |  |
|     | 3. Назначение электропневматических реле в цепи пуска дизеля                                  |  |  |
|     | 4. Цепи включения регулятора напряжения                                                       |  |  |
|     | 5. Алгоритм завершения процесса пуска дизеля: назначение реле Ру9, Ру10, Ру23                 |  |  |
| 2   | Цепи возбуждения тягового генератора                                                          |  |  |
|     | 1. Синхронный возбудитель и управляемый выпрямитель возбуждения.                              |  |  |
|     | 2. Цепи включения контактора возбуждения возбудителя ВВ                                       |  |  |
|     | 3. Цепи включения контактора возбуждения генератора КВ                                        |  |  |
|     | 4. Блокировки в цепи контакторов ВВ и КВ                                                      |  |  |
| 3   | Цепи приведения тепловоза в движение                                                          |  |  |
|     | 1. Реверсор. Его конструкция. Обозначение на схеме                                            |  |  |
|     | 2. Контакторы РКП и РКВ.                                                                      |  |  |
|     | 3. Цепь тягового реле Ру5.                                                                    |  |  |
|     | 4. Отключатели моторов ОМ1-ОМ6. Контакты ОМ1-ОМ6 в цепи силовых поездных контакторов          |  |  |
|     | П1-П6.                                                                                        |  |  |
|     | 5. Цепи управления включения поездных контакторов П1-П6. Силовые цепи включения поездных      |  |  |
|     | контакторов П1-П6.                                                                            |  |  |
|     | 6. Реле времени Рв3 в Цепи управления включения поездных контакторов П1-П6.                   |  |  |
| 4   | Подключение цепей тяговых электродвигателей к выпрямительной установке.                       |  |  |
|     | 1. Переключения в цепи возбуждения тягового генератора.                                       |  |  |
|     | 2. Назначение тягового реле Ру5 в цепи возбуждения тягового генератора в режиме трогания.     |  |  |
|     | 3. Цепи включения «Указатель повреждений» на тяговых позициях                                 |  |  |
|     | 4. Цепи включения блока диодного сравнения БДС на напряжение обмоток возбуждения тяговых      |  |  |
|     | электродвигателей                                                                             |  |  |
|     | 5. Цепи включения тяговых электродвигателей на выпрямительную установку. Цепи сигнализации    |  |  |
|     | «Сброс нагрузки».                                                                             |  |  |
|     | 6. Выдержка времени при переводе контроллера на нулевую позицию (или при срабатывании         |  |  |
|     | аппаратов защиты): сначала отключаются контакторы КВ и ВВ, а поездные контакторы П1-П6        |  |  |
|     | остаются включенными еще в течение 0,8 с за счет выдержки времени на размыкание контакта реле |  |  |
|     | РВЗ. Поэтому к моменту отключения поездных контакторов магнитное поле тягового генератора в   |  |  |

| №         | Тематика практических занятий/краткое содержание                                                                                                       |  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $\Pi/\Pi$ | тематика практических запитии/ краткое содержание                                                                                                      |  |
|           | значительной мере уменьшается, напряжение тягового генератора снижается, и облегчается                                                                 |  |
|           | гашение дуги поездными контакторами.                                                                                                                   |  |
|           | 7. Цепи отключения вспомогательных насосов дизеля                                                                                                      |  |
| 5         | Цепи набора позиций контроллера                                                                                                                        |  |
|           | 1. Поездной контроллер. Конструкция. Условное обозначение на схеме.                                                                                    |  |
|           | 2. Электромагниты.МР1-МР4. Условное изображение на схеме. Определение числа позиций                                                                    |  |
|           | контроллера.                                                                                                                                           |  |
|           | 3. Управление возбуждением генератора на промежуточных позициях контроллеоа.                                                                           |  |
|           | 4. Цепи включения мотор-вентиляторов охлаждения силового оборудования тепловоза                                                                        |  |
|           | <ul><li>5. Управление мотор-вентиляторами на промежуточных позициях контроллеоа.</li><li>6. Управление скоростью тепловоза.</li></ul>                  |  |
|           | <ol> <li>э правление скоростью тепловоза.</li> <li>Режим автономного холостого хода исключается при размыкании контакта тумблера отключения</li> </ol> |  |
|           | тормоза ОТ, когда включен электрический тормоз.                                                                                                        |  |
|           | Для того, чтобы можно было независимо управлять секциями тепловоза в режиме электрического                                                             |  |
|           | торможения в цепи электромагнитов МР2 и МР3 установлены контакты тормозного реле РТ3. При                                                              |  |
|           | включении режима электрического торможения контакты РТЗ переключаются, и управление                                                                    |  |
|           | электромагнитами осуществляется уже от тормозного контроллера.                                                                                         |  |
| 6         | Цепи отключения напряжения тягового генератора при срабатывании защиты                                                                                 |  |
|           | дизеля.                                                                                                                                                |  |
|           | 1. Срабатывание защиты или быстрый перевод контроллера с тяговой позиции на нулевую (сброс                                                             |  |
|           | позиций)                                                                                                                                               |  |
|           | 2. Цепи срабатывания реле TPM, TPB1 или TPB2.                                                                                                          |  |
|           | 3. Контакт на переключение РКП. Отключение реле времени РВЗ. Оключение катушек поездных                                                                |  |
|           | контакторов П1-П6 и катушки реле РУ5 контактом РВЗ с выдержкой времени 0,8с                                                                            |  |
|           | 4. Открючение контакторов П1—П6. Отключение тяговые двигатели от тягового генератора.                                                                  |  |
|           | 5. Цепи отключения реле РУ5. Цепь питания катушки реле РКВ от выключателя «Управление                                                                  |  |
|           | возбуждением».                                                                                                                                         |  |
|           | 6. Цепь питания мотор-вентиляторов.                                                                                                                    |  |
| 7         | Управление схемой при аварийном отключении тягового двигателя Управление                                                                               |  |
|           | тепловозом в маневровом режиме                                                                                                                         |  |
|           | 1. Отключения тяговых электродвигателей в случаеего неисправности тумблерами ОМ1—ОМ6.                                                                  |  |
|           | Работа тепловоаз на пяти исправных двигателях до прибытия в депо для ремонта.                                                                          |  |
|           | 2. Управления тепловозом при маневрах на станционных путях кнопкой КМР "Маневры". Режимы                                                               |  |
|           | управления к тумблерами «Управление тепловозом» и «Движение».                                                                                          |  |
|           | 4. Работа регулятор дизеля поддерживает при маневрах                                                                                                   |  |
|           | 5. Режим работы генератора (ток, напряжение и мощность) при маневрах                                                                                   |  |
| 8         | Алгоритм работы микропроцессорной системы поосного регулирования                                                                                       |  |
|           | 1. Электрическая передача с системой поосного регулирования касательной силы тяги.                                                                     |  |
|           | 2. Управляемый выпрямительный модуль (УВУ) напряжения тягового электродвигателя.                                                                       |  |
|           | 3. Датчики частоты вращения колесных пар Txl Tx6.                                                                                                      |  |
|           | 4. Блок управления управляемыми выпрямителями.                                                                                                         |  |
|           | 5. Алгоритм управления напряжением тягового генератора в микропроцессорной системе поосного                                                            |  |
|           | регулирования напряжение тягового генератора                                                                                                           |  |
|           | 6. Алгоритм управления напряжением вспомогательного генератора в микропроцессорной системе                                                             |  |
| 0         | поосного регулирования напряжение тягового генератора                                                                                                  |  |
| 9         | Аппаратные средств микропроцессорной системы поосного регулирования                                                                                    |  |
|           | 1. Структура микропроцессорной системы посного регулирования                                                                                           |  |
|           | 2. Гальванические развязки в микропроцессорной системе                                                                                                 |  |
|           | 3. Средства ввода дискретных сигналов                                                                                                                  |  |
|           | 4. Средства ввода частотных сигналов.                                                                                                                  |  |

| <b>№</b><br>п/п | Тематика практических занятий/краткое содержание                                            |  |  |
|-----------------|---------------------------------------------------------------------------------------------|--|--|
|                 | 5. Средства вывода аналоговых управляющих сигналов в канале регулирования тока возбуждения  |  |  |
|                 | возбудителя и канале регулирования тока возбуждения стартер-генератора                      |  |  |
|                 | 6. Напряжения питания бортовой сети тепловоза (110В). Ннапряжения питания микропроцессорной |  |  |
|                 | системы: $+5$ B, $\pm 15$ B, $18$ B, $24$ B.                                                |  |  |

# 4.3. Самостоятельная работа обучающихся.

| №         | Вид самостоятельной работы                                                  |  |
|-----------|-----------------------------------------------------------------------------|--|
| $\Pi/\Pi$ |                                                                             |  |
| 1         | Подготовка к лабораторным работам                                           |  |
| 2         | Самостоятельное изучение конструкции и работы вспомогательного оборудования |  |
|           | тепловоза                                                                   |  |
| 3         | Самостоятельное изучение основных цепей управления тепловозом               |  |
| 4         | Подготовка к промежуточной аттестации.                                      |  |
| 5         | Подготовка к текущему контролю.                                             |  |

# 5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

| <b>№</b> | Библиографическое описание                       | Место доступа                    |
|----------|--------------------------------------------------|----------------------------------|
| Π/Π      | 7.                                               | HERE ( C) HERE (15) HERE         |
| 1        | Режимы работы тягового электрооборудования       | НТБ (уч.6); НТБ (фб.); НТБ       |
|          | тепловозов в передаче переменно-постоянного      | (43.2)                           |
|          | тока Е.Ю. Логинова, М.А. Яцков; МИИТ. Каф.       |                                  |
|          | "Локомотивы и локомотивное хозяйство"            |                                  |
|          | Однотомное издание МИИТ, 2002                    |                                  |
| 2        | Электрические передачи локомотивов В.В.          | Библиотека МКТ (Люблино);        |
|          | Стрекопытов, А.В. Грищенко, В.А. Кручек; Под     | НТБ (уч.6); НТБ (фб.); НТБ       |
|          | ред. В.В. Стрекопытова Однотомное издание        | (43.2)                           |
|          | Маршрут, 2003                                    |                                  |
| 3        | Микропроцессорные системы автоматического        | НТБ (уч.3); НТБ (фб.); НТБ       |
|          | регулирования электропередачи тепловозов А.В.    | (чз.2)                           |
|          | Грищенко, В.В. Грачев, С.И. Ким и др.; Ред. А.В. |                                  |
|          | Грищенко; Под Ред. А.В. Грищенко Однотомное      |                                  |
|          | издание Маршрут, 2004                            |                                  |
| 4        | Логинова, Е. Ю. Электрическое оборудование       | URL:                             |
|          | локомотивов : учебник / Е. Ю. Логинова. —        | https://e.lanbook.com/book/55405 |
|          | Москва:, 2014. — 576 с. — ISBN 978-5-89035-      | (дата обращения: 15.06.2025). —  |
|          | 718-2. — Текст : электронный Логинова, Е. Ю.     | Режим доступа: для авториз.      |
|          | Электрическое оборудование локомотивов:          | пользователей.                   |
|          | учебник / Е. Ю. Логинова. — Москва : , 2014. —   |                                  |
|          | 576 с. — ISBN 978-5-89035-718-2. — Текст :       |                                  |
|          | электронный // ЭБС Лань : электронно-            |                                  |

|   | библиотечная система. — URL:                      |                                   |
|---|---------------------------------------------------|-----------------------------------|
|   | https://e.lanbook.com/book/55405 (дата обращения: |                                   |
|   | 15.06.2025). — Режим доступа: для авториз.        |                                   |
|   | пользователей.                                    |                                   |
| 5 | Подвижной состав железных дорог – 2:              | https://e.lanbook.com/book/153602 |
|   | практикум: учебное пособие / П. В. Дворкин, Д.    | (дата обращения: 15.06.2025). —   |
|   | Н. Курилкин, М. Н. Панченко [и др.]. — Санкт-     | Режим доступа: для авториз.       |
|   | Петербург : ПГУПС, 2019. — 54 с. — ISBN 978-5-    | пользователей                     |
|   | 7641-1349-4. — Текст : электронный //. //ЭБС Лань |                                   |
|   | : электронно-библиотечная система                 |                                   |
| 6 | Харламов, В. В. Совершенствование технологии      | https://e.lanbook.com/book/129474 |
|   | испытаний асинхронных тяговых двигателей          | (дата обращения: 15.06.2025). —   |
|   | локомотивов : монография / В. В. Харламов, Д. И.  | Режим доступа: для авториз.       |
|   | Попов, А. В. Литвинов. — Омск : ОмГУПС, 2016.     | пользователей.                    |
|   | — 160 с. — ISBN 978-5-949-41144-5. — Текст :      |                                   |
|   | электронный // //ЭБС Лань : электронно-           |                                   |
|   | библиотечная система                              |                                   |
| 7 | Стрекопытов, В. В. Электрические передачи         | URL:                              |
|   | локомотивов : учебник / В. В. Стрекопытов, А. В.  | https://e.lanbook.com/book/59216  |
|   | Грищенко, В. А. Кручек; под редакцией В. В.       | (дата обращения: 15.06.2025). —   |
|   | Стрекопытова. — Москва:, 2003. — 310 с. —         | Режим доступа: для авториз.       |
|   | ISBN 5-89035-081-1. — Текст : электронный //      | пользователей.                    |
|   | ЭБС Лань : электронно-библиотечная система. —     |                                   |
| 8 | Микропроцессорные системы автоматического         | https://e.lanbook.com/book/58985  |
|   | регулирования электропередачи тепловозов:         | (дата обращения: 15.06.2025).     |
|   | учебное пособие / под редакцией А. В. Грищенко.   |                                   |
|   | — Москва : , 2004. — 172 с. — ISBN 5-89035-135-   |                                   |
|   | 4. — Текст: электронный // Лань: электронно-      |                                   |
|   | библиотечная система. — URL:                      |                                   |
| 9 | Курилкин, Д. Н. Электрические передачи            | https://e.lanbook.com/book/156036 |
|   | локомотивов: учебное пособие / Д. Н. Курилкин.    | (дата обращения: 15.06.2025). —   |
|   | — Санкт-Петербург : ПГУПС, 2020 — Часть 1 —       | Режим доступа: для авториз.       |
|   | 2020. — 66 с. — ISBN 978-5-7641-1390-6. — Текст   | пользователей.                    |
|   | : электронный // ЭБС Лань : электронно-           |                                   |
|   | библиотечная система                              |                                   |
|   |                                                   | l .                               |

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Информационный портал Научная электронная библиотека eLIBRARY.RU (www.elibrary.ru); Единая коллекция цифровых образовательных ресурсов (http://window.edu.ru); Научно-техническая библиотека РУТ (МИИТ) (http://library.miit.ru).

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Специализированная программа Mathcad.

Специализированная программа Simulink.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Компьютерный класс Оборудование тепловозной лаборатории кафедры «Электропоезда и локомотивы» РУТ (МИИТ).

9. Форма промежуточной аттестации:

Зачет в 8, 9 семестрах.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

профессор, профессор, д.н. кафедры

«Электропоезда и локомотивы» Е.Ю. Логинова

Согласовано:

Заведующий кафедрой ЭиЛ О.Е. Пудовиков

Председатель учебно-методической

комиссии С.В. Володин