МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА»

УТВЕРЖДАЮ:

Первый проректор

В.С. Тимонин

08 декабря 2022 г.

Кафедра «Электроэнергетика транспорта»

Авторы Бадёр Михаил Петрович, д.т.н., профессор

Ермоленко Дмитрий Владимирович, д.т.н., доцент

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Электромагнитная совместимость и средства защиты

Специальность: 23.05.05 – Системы обеспечения движения

поездов

Специализация: Электроснабжение железных дорог

Квалификация выпускника: Инженер путей сообщения

 Форма обучения:
 очная

 Год начала подготовки
 2020

Одобрено на заседании

Учебно-методической комиссии института

Протокол № 10 26 мая 2020 г.

Председатель учебно-методической

комиссии

С.В. Володин

Одобрено на заседании кафедры

Протокол № 11 21 мая 2020 г.

Заведующий кафедрой

М.В. Шевлюгин

Рабочая программа учебной дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 3221

Подписал: Заведующий кафедрой Шевлюгин Максим

Валерьевич

Дата: 21.05.2020

1. ЦЕЛИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целью изучения дисциплины "Электромагнитная совместимость и средства защиты" является освоение методов расчёта и способов обеспечения электромагнитной совместимости электрических железных дорог со смежными линиями связи, рельсовыми цепями автоблокировки, устройствами железнодорожной автоматики, низковольтными линиями электропередачи, трубопрово¬дами, металлическими сооружениями и питающими высоковольтными электросетями;

изучения методов математического моделирования источников помех (выпрямительноинверторных агрегатов тяговых подстанций, электроподвижного состава и др.), законов передачи электромагнитной энергии электрических железных дорог в смежные системы, способов борьбы с атмосферными и коммутационными перенапряжениями.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Учебная дисциплина "Электромагнитная совместимость и средства защиты" относится к блоку 1 "Дисциплины (модули)" и входит в его базовую часть.

2.1. Наименования предшествующих дисциплин

Для изучения данной дисциплины необходимы следующие знания, умения и навыки, формируемые предшествующими дисциплинами:

2.1.1. Информатика:

Знания: основы теории информации, программирования, работы в операционной системе Windows и офисных пакетах, алгоритмические языки высокого уровня

Умения: представлять числа в различных форматах данных, составлять алгоритмы вычислительных задач

Навыки: навыками программирования на языках высокого уровня

2.1.2. Электроснабжение железных дорог:

Знания: Режимы работы электрических сетей и энергосистем; способы регулирования напряжения в электрических сетях; способы экономии электроэнергии в электрических сетях

Умения: Определить параметры элементов электрических сетей; потери мощности электроэнергии в электрических сетях; регулировать напряжение в сети

Навыки: Методами расчетов режимов работы электрических сетей

2.2. Наименование последующих дисциплин

Результаты освоения дисциплины используются при изучении последующих учебных дисциплин:

2.2.1. Качество электрической энергии

Знания: влияние качества электроэнергии (КЭ) на электроприемники и электроустановки, методы и приборы для экспериментальных исследований ПКЭвлияние качества электроэнергии (КЭ) на электроприемники и электроустановки, методы и приборы для экспериментальных исследований ПКЭ

Умения: выбрать схему или техническое устройство для нормализации ПКЭ, пользоваться приборами контроля ПКЭвыбрать схему или техническое устройство для нормализации ПКЭ, пользоваться приборами контроля ПКЭ

Навыки: навыками осуществлять эксплуатационный контроль КЭ и управления КЭнавыками осуществлять эксплуатационный контроль КЭ и управления КЭ

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫЕ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

В результате освоения дисциплины студент должен:

№ п/п	Код и название компетенции	Ожидаемые результаты
1	ПКО-2 Способен использовать нормативно- технические документы для контроля качества и безопасности технологических процессов эксплуатации, технического обслуживания и ремонта систем обеспечения движения поездов, их модернизации, оценки влияния качества продукции на безопасность движения поездов, использовать технические средства для диагностики технического состояния систем;	ПКО-2.2 Производит оценку взаимного влияния элементов системы обеспечения движения поездов и факторов, воздействующих на работоспособность и надёжность оборудования системы обеспечения движения поездов с использованием современных научно-обоснованных методик.
2	ПКО-5 Способен проводить, на основе современных научных методов, в том числе при использовании информационнокомпьютерных технологий, исследования влияющих факторов, технических систем и технологических процессов в области проектирования, эксплуатации, технического обслуживания и ремонта объектов системы обеспечения движения поездов.	ПКО-5.1 Знает (имеет представление) о современных научных методах исследований технических систем и технологических процессов в области проектирования, эксплуатации, технического обслуживания и ремонта объектов системы обеспечения движения поездов.

4. ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ) В ЗАЧЕТНЫХ ЕДИНИЦАХ И АКАДЕМИЧЕСКИХ ЧАСАХ

4.1. Общая трудоемкость дисциплины составляет:

5 зачетных единиц (180 ак. ч.).

4.2. Распределение объема учебной дисциплины на контактную работу с преподавателем и самостоятельную работу обучающихся

	Количеств	о часов
Вид учебной работы	Всего по учебному плану	Семестр 8
Контактная работа	74	74,15
Аудиторные занятия (всего):	74	74
В том числе:		
лекции (Л)	44	44
практические (ПЗ) и семинарские (С)	30	30
Самостоятельная работа (всего)	70	70
Экзамен (при наличии)	36	36
ОБЩАЯ трудоемкость дисциплины, часы:	180	180
ОБЩАЯ трудоемкость дисциплины, зач.ед.:	5.0	5.0
Текущий контроль успеваемости (количество и вид текущего контроля)	КП (1), ПК2, ТК	КП (1), ПК2, ТК
Виды промежуточной аттестации (экзамен, зачет)	Экзамен	Экзамен

4.3. Содержание дисциплины (модуля), структурированное по темам (разделам)

				Виды уч	Формы текущего				
№ π/π	Семестр	Тема (раздел) учебной дисциплины	П	JIP	ПЗ/ТП	KCP	CP	Всего	контроля успеваемости и промежу-точной аттестации
1	2	3	4	5	6	7	8	9	10
1	8	Раздел 1 Теория электромагнитной совместимости электрических цепей	14		16		10	40	
2	8	Раздел 2 Исследование собственных и взаимных параметров электромагнитной совместимости тягового электроснабжения и линий связи	8		4		10	22	TK
3	8	Тема 2.1 Исследование коэффициента чувствительности двухпроводной цепи связи.	2					2	
4	8	Тема 2.2 Определение параметров электрического влияния между цепями воздушных линий	2					2	
5	8	Тема 2.3 Определение коэффициента взаимной индукции между однопроводной и двухпроводной цепями. Определение коэффициента взаимной индукции между двухпроводными цепями.	2					2	
6	8	Тема 2.4 Методы исследования распространения электромагнитных колебаний по многопроводным линиям с помощью матричных телеграфных уравнений. Электромагнитное поле над поверхностью земли.	2					2	
7	8	Раздел 3 Краткая методика электромагнитной и гальванической совместимости электрических железных дорог со смежными линиями	10		4		10	24	
8	8	Тема 3.1 Приближённая методика	2					2	

					небной де нисле инт				Формы текущего
№ п/п	Семестр	Тема (раздел) учебной дисциплины	П	JIP	ПЗ/ТП	KCP	CP	Всего	контроля успеваемости и промежу-точной аттестации
1	2	3	4	5	6	7	8	9	10
		электромагнитного влияния							
		электрических железных дорог на смежные линии Приближённые уравнения электрического, магнитного, электромагнитного влияния тяговой сети на смежные линии.							
9	8	Тема 3.2 Краткая методика расчётов опасного и мешающего влияний линий высокого напряжения на цепи связи.	2					2	
10	8	Тема 3.3 Определение влияющих токов при вынужденном режиме. Тяговая сеть переменного тока 25 кВ. Тяговая сеть переменного тока 2?25 кВ	2					2	
11	8	Тема 3.4 Расчет мешающих влияний. Расчет мешающих влияний тяговой сети и линий продольного электроснабжения.	2					2	
12	8	Тема 3.5 Влияния тягового тока на работу рельсовых цепей и устройства железнодорожной автоматики. Методика расчета влияния тягового тока на работу рельсовых цепей.	2					2	
13	8	Раздел 4 Гармонический анализ влияющих токов и напряжений	6		4		30	40	ПК2
14	8	Тема 4.1 Представление несинусоидальных токов и напряжений с помощью рядов Фурье. Возникновение гармоник при потреблении электроэнергии.	2				20	22	КП
15	8	Тема 4.2 Гармонический анализ входного (сетевого) тока преобразователей (выпрямителя электровоза, трехфазных	2					2	

							сти в часа пой форме		Формы текущего
No	стр	Тема (раздел) учебной		D I OW	vic mili	-Partinon	топ форми	-	контроля
п/п	Семестр	тема (раздел) учеоной дисциплины							успеваемости и
	ರ	7, 1, 1		_	ПЗ/ТП	ь	_	Всего	промежу- точной
			П	ЛР	113	KCP	C	Вс	аттестации
1	2	3	4	5	6	7	8	9	10
		преобразователей, с							
		компенсирующими							
16	8	устройствами). Тема 4.3	2					2	
10	0	Гармонические	2					2	
		составляющие импульсных							
		преобразователей							
		постоянного тока. Принцип							
		импульсного регулирования напряжения							
		постоянного тока. Системы							
		модуляции и управления							
17	0	прерывателем.			2		10	10	
17	8	Раздел 5 Защиты, обеспечивающие	6		2		10	18	
		электромагнитную							
		совместимость							
18	8	Тема 5.1	2					2	
		Защиты, обеспечивающие							
		электромагнитную совместимость							
		электрических железных							
		дорог и смежных линий							
19	8	Тема 5.2	2					2	
		Основные меры по защите подземных сооружений.							
		Протекторная защита.							
		Дренажные защиты.							
		Защита от							
		искрообразования							
		со¬оружений с легковоспламеняющи¬мися							
		веществами.							
20	8	Тема 5.3	2					2	
		Электромагнитная							
		совместимость тягового электроснабжения с							
		питающими электросетями.							
		Оптимизация режимов							
		работы выпрямительно-							
		инверторных агрегатов							
		тяговых подстанций с целью компенсации							
		реактивной мощности.							
		Оптимизация загрузки							
		преобразовательных							
21	8	агрегатов. Экзамен						36	Экзамен
22	U	Тема 1.1						50	Экзамен
		Общие сведения.							
		Особенности и основные							
		параметры влияющих и							
		подверженных влиянию электрических цепей.							
	1	олокіри южил ценен.		I .		I	l		1

No Dewectp		Тема (раздел) учебной		Виды уч	Формы текущего контроля				
п/п	Семе	дисциплины	Л	JIP	ПЗ/ТП	KCP	CP	Всего	успеваемости и промежу- точной аттестации
1	2	3	4	5	6	7	8	9	10
23		Тема 1.2 Теория электромагнитного влияния между электрическими цепями. Общие уравнения влияния между полностью несимметричными цепями.							
24		Тема 1.3 Основные уравнения влияния на однопроводную воздушную цепь, замкнутую по концам на сопротивления, равные волновому; изолированную по концам; замкнутую по концам на землю; изолированную на одном конце и замкнутую на землю на другом.							
25		Всего:	44		30		70	180	

4.4. Лабораторные работы / практические занятия

Лабораторные работы учебным планом не предусмотрены.

Практические занятия предусмотрены в объеме 30 ак. ч.

№ п/п	№ семестра	Тема (раздел) учебной дисциплины	Наименование занятий	Всего ча- сов/ из них часов в интерак- тивной форме
1	2	3	4	5
1	8	РАЗДЕЛ 1 Теория электромагнитной совместимости электрических цепей	Расчёт опасных электрических, магнитных и гальванических влияний тяговой сети и линий продольного электроснабжения на линии связи.	4
2	8	РАЗДЕЛ 1 Теория электромагнитной совместимости электрических цепей	Расчёт опасных электрических, магнитных и гальванических влияний тяговой сети и линий продольного электроснабжения на линии связи.	4
3	8	РАЗДЕЛ 2 Исследование собственных и взаимных параметров электромагнитной совместимости тягового электроснабжения и линий связи	Расчёт мешающих влияний тяговой сети на проводные линии связи.	2
4	8	РАЗДЕЛ 2 Исследование собственных и взаимных параметров электромагнитной совместимости тягового электроснабжения и линий связи	Векторные диаграммы наведенных напряжений в трёхфазной низковольтной линии при электромагнитном влиянии на них тяговой сети и линий продольного электроснабжения.	2
5	8	РАЗДЕЛ 3 Краткая методика электромагнитной и гальванической совместимости электрических железных дорог со смежными линиями	Расчёт гармонических составляющ. сетевых токов, питающих напряжений и выпрямленного напряжения 6-ти, 12-ти и 24-х пульсовых выпрямительно-инверторных агрегатов.	4
6	8	РАЗДЕЛ 4 Гармонический анализ влияющих токов и напряжений	Аналитическое описание кривой тока, потребляемого выпрямительным электроподвижным составом и её гармонический анализ при допущении, что индуктивное сопротивление в цепи двигателей близко к бесконечности.	2
7	8	РАЗДЕЛ 4 Гармонический анализ влияющих токов и напряжений	Исследование на ЭВМ коэффициентов сглаживания фильтров тяговых подстанций и электроподвижного состава.	2

№ п/п	№ семестра	Тема (раздел) учебной дисциплины	Наименование занятий	Всего ча- сов/ из них часов в интерак- тивной форме
1	2	3	4	5
8	8	РАЗДЕЛ 5 Защиты, обеспечивающие электромагнитную совместимость	Расчёты коэффициентов искажения тока и коэффициентов несинусоидальности напряжения в сетях питающих тяговые подстанции постоянного тока.	2
9	8		Теория электромагнитной совместимости электрических цепей	12
		1	ВСЕГО:	34/0

4.5. Примерная тематика курсовых проектов (работ)

Курсовой проект представляет собой комплексное расчётно-экспериментальное исследование электромагнитной совместимости электрических ж.д. с линиями связи и питающими электросетями.

Тема курсового проекта: "Разработка способов снижения электромагнитного и гальванического влияния электрических ж.д. на линии связи и питающие электросистемы до нормированных величин". Варианты исходных условий определяются заданием к комплексной учебно-исследовательской работе: вид электрической ж.д. (переменного тока 25 кВ или 2X25 кВ, постоянного тока с напряжением в тяговой сети 3 кВ, 12 кВ или 24 кВ) и тип электроподвижного состава (выпрямительный, с тиристорно-импульсными преобразователями, с асинхронным тяговым приводом).

Объём курсового проекта: определяется часами самостоятельной и аудиторной работы в соответствии с учебным планом. В работе должны быть отражены: расчеты опасных влияний электрических ж.д. переменного тока на линии связи в вынужденном режиме и в режиме короткого замыкания в тяговой сети; теоретические расчёты и экспериментальные исследования гармонических составляющих выпрямленного (инвертируемого) напряжения и тока в тяговой сети, сетевого тока и питающего напряжения тяговых подстанций постоянного тока; расчёты мешающих влияний электрических ж.д. переменного и постоянного тока на линии связи для заданных мгновенных схем электроснабжения и режимов работы выпрямительно-инверторных агрегатов тяговых подстанций и электроподвижного состава; выбор оптимальных схем и параметров сглаживающих фильтров тяговой подстанции постоянного тока и тиристорноимпульсного подвижного состава; расчёты коэффициентов искажения сетевого тока, коэффициентов несинусоидальности питающего напряжения, коэффициентов мощности выпрямительно-инверторных агрегатов тяговых подстанций, предложения и разработка мероприятий по доведению этих показателей до значений допустимых по ГОСТ 32144-2013 «Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения».

Курсовой проект оформляется в виде пояснительной записки, отражающей основное содержание проекта и включающей рисунки и осциллограммы кривых выпрямленного (инвертируемого) напряжения, токов в тяговой сети, сетевого тока и питающего напряжения, а также наведенных напряжений в линии связи для указанных в задании режимов работы выпрямительно-инверторных агрегатов тяговых подстанций и электроподвижного состава.

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Лекции проводятся в традиционной акдиторной организационной форме, по типу управления познавательной деятельностью и являются традиционными классическилекционнымии с использованием нтерактивных (диалоговых) технологий. Также возможно использование иллюстративного материала. Самостоятельная работа студента организована с использованием традиционных видов работы и интерактивных технологий. К традиционным видам работы относятся отработка лекционного материала и отработка отдельных тем по учебным пособиям и медиаинтернет ресурсам.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

№ п/п	№ семестра	Тема (раздел) учебной дисциплины	Вид самостоятельной работы студента. Перечень учебно-методического обеспечения для самостоятельной работы	Всего часов
1	2	3	4	5
1	8	РАЗДЕЛ 1 Теория электромагнитной совместимости электрических цепей	Чтение учебников и дополнительной литературы по темам, прослушанных лекций.	10
2	8	РАЗДЕЛ 2 Исследование собственных и взаимных параметров электромагнитной совместимости тягового электроснабжения и линий связи	Чтение учебников и дополнительной литературы по темам, прослушанных лекций.	10
3	8	РАЗДЕЛ 3 Краткая методика электромагнитной и гальванической совместимости электрических железных дорог со смежными линиями	Чтение учебников и дополнительной литературы по темам, прослушанных лекций.	10
4	8	РАЗДЕЛ 4 Гармонический анализ влияющих токов и напряжений	Представление несинусоидальных токов и напряжений с помощью рядов Фурье. Возникновение гармоник при потреблении электроэнергии.	20
5	8	РАЗДЕЛ 4 Гармонический анализ влияющих токов и напряжений	Чтение учебников и дополнительной литературы по темам, прослушанных лекций.	10
6	8	РАЗДЕЛ 5 Защиты, обеспечивающие электромагнитную совместимость	Чтение учебников и дополнительной литературы по темам, прослушанных лекций.	10
			ВСЕГО:	70

7. ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ ЛИТЕРАТУРЫ, НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

7.1. Основная литература

№ п/п	Наименование	Автор (ы)	Год и место издания Место доступа	Используется при изучении разделов, номера страниц
1	Расчеты	С.М. Аполлонский,	Москва: УМЦ ЖДТ, 2006	Все разделы
	электромагнитных	А.Н.Горский	ЭБС Лань,	
	полей.		https://e.lanbook.com/book/59024	
2	Электромагнитная	Шаманов, В.И.	Москва: УМЦ ЖДТ, 2013	Все разделы
	совместимость систем		ЭБС Лань, https://e.lanbook.com	1
	железнодорожной			
	автоматики и			
	телемеханики			
	[Электронный ресурс]			

7.2. Дополнительная литература

№ п/п	Наименование	Автор (ы)	Год и место издания Место доступа	Используется при изучении разделов, номера страниц
3	Двенадцатипульсовые полупроводниковые выпрямители тяговых подстанций.	Б.С.Барковский, Г.С. Магай, Под ред. М.Г. Шалимова	М.: Транспорт, 1990 Учебная библиотека №3 (ауд. 4519)	Все разделы
4	Электроника и преобразовательная техника. Том 1: Электроника [Электронный ресурс]	Бурков, А.Т.	Москва: УМЦ ЖДТ,, 2015 ЭБС Лань, https://e.lanbook.com	Все разделы
5	Электроника и преобразовательная техника. Том 2: Электронная преобразовательная техника [Электронный ресурс]	Бурков, А.Т.	Москва: УМЦ ЖДТ,, 2015 ЭБС Лань, https://e.lanbook.com	Все разделы

8. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ "ИНТЕРНЕТ", НЕОБХОДИМЫЕ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

- 1. http://library.miit.ru/ электронно-библиотечная система Научно-технической библиотеки МИИТ.
- 2. http://rzd.ru/ сайт ОАО «РЖД».
- 3. http://elibrary.ru/ научно-электронная библиотека.
- 4. Поисковые системы: Yandex, Google, Mail.

9. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Для самостоятельной работы студентам, наряду с рекомендуемой и дополнительной литературой, предлагается использовать данные и информацию следующего характера (в том числе посредством поиска в сети Интернет):

1) справочно-информационного (словари, справочники, энциклопедии, библиографические сборники и т.д.);

- 2) официального (сборники нормативно-правовых документов, законодательных актов и кодексов);
- 3) первоисточники (исторические документы и тексты, литература на иностранных языках):
- 4) научного и научно-популярного (монографии, статьи, диссертации, научно-реферативные журналы, сборники научных трудов, ежегодники и т.д.);
- 5) периодические издания (профессиональные газеты и журналы); и т.д.
- В качестве электронных поисковых систем и баз данных публикаций рекомендуется пользоваться следующими электронными ресурсами:
- Российская Государственная Библиотека http://www.rsl.ru
- Научная электронная библиотека eLIBRARY.RU http://elibrary.ru
- Государственная публичная научно-техническая библиотека России http://www.gpntb.ru
- Всероссийская государственная библиотека иностранной литературы http://www.libfl.ru
- -Институт научной информации по общественным наукам Российской академии наук (ИНИОН РАН) http://www.inion.ru

10. ОПИСАНИЕ МАТЕРИАЛЬНО ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

- 1. Меловая или маркерная доска
- 2. Учебного-лабораторное оборудование для изучения дисциплины «Электромагнитная совместимость и средства защиты»

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

Обучающимся необходимо помнить, что качество полученного образования в немалой степени зависит от активной роли самого обучающегося в учебном процессе. Обучающийся должен быть нацелен на максимальное усвоение подаваемого лектором материала. После лекции и во время специально организуемых индивидуальных встреч он имеет право задать лектору интересующие его вопросы.

Лекционные занятия составляют основу теоретического обучения и должны давать систематизированные основы знаний по дисциплине, раскрывать состояние и перспективы развития соответствующей области науки, концентрировать внимание обучающихся на наиболее сложных и узловых вопросах, стимулировать их активную познавательную деятельность и способствовать формированию творческого мышления. Главная задача лекционного курса — сформировать у обучающихся системное представление об изучаемом предмете, обеспечить усвоение будущими специалистами основополагающего учебного материала, принципов и закономерностей развития соответствующей научно-практической области, а также методов применения полученных знаний, умений и навыков.

Основные функции лекций:

познавательно-обучающая;

развивающая;

ориентирующе-направляющая;

активизирующая;

воспитательная;

организующая;

информационная.

Выполнение практических заданий служит важным связующим звеном между

теоретическим освоением данной дисциплины и применением ее положений на практике. Они способствуют развитию самостоятельности обучающихся, более активному освоению учебного материала, являются важной предпосылкой формирования профессиональных качеств будущих специалистов.

Проведение практических занятий не сводится только к органическому дополнению лекционных курсов и самостоятельной работы обучающихся. Их вместе с тем следует рассматривать как важное средство проверки усвоения обучающимися тех или иных положений, даваемых на лекции, а также рекомендуемой для изучения литературы; как форма текущего контроля за отношением обучающихся к учебе, за уровнем их знаний, а следовательно, и как один из важных каналов для своевременного подтягивания отстающих обучающихся.

При подготовке специалиста важны не только серьезная теоретическая подготовка, знание основ надежности подвижного состава, но и умение ориентироваться в разнообразных практических ситуациях, ежедневно возникающих в его деятельности. Этому способствует форма обучения в виде практических занятий. Задачи практических занятий: закрепление и углубление знаний, полученных на лекциях и приобретенных в процессе самостоятельной работы с учебной литературой, формирование у обучающихся умений и навыков работы с исходными данными, научной литературой и специальными документами. Практическому занятию должно предшествовать ознакомление с лекцией на соответствующую тему и литературой, указанной в плане этих занятий. Самостоятельная работа может быть успешной при определенных условиях, которые необходимо организовать. Ее правильная организация, включающая технологии отбора целей, содержания, конструирования заданий и организацию контроля, систематичность самостоятельных учебных занятий, целесообразное планирование рабочего времени позволяет привить студентам умения и навыки в овладении, изучении, усвоении и систематизации приобретаемых знаний в процессе обучения, привить навыки повышения профессионального уровня в течение всей трудовой деятельности.

Каждому студенту следует составлять еженедельный и семестровый планы работы, а также план на каждый рабочий день. С вечера всегда надо распределять работу на завтра. В конце каждого дня целесообразно подводить итог работы: тщательно проверить, все ли выполнено по намеченному плану, не было ли каких-либо отступлений, а если были, по какой причине это произошло. Нужно осуществлять самоконтроль, который является необходимым условием успешной учебы. Если что-то осталось невыполненным, необходимо изыскать время для завершения этой части работы, не уменьшая объема недельного плана.

Компетенции обучающегося, формируемые в результате освоения учебной дисциплины, рассмотрены через соответствующие знания, умения и владения. Для проверки уровня освоения дисциплины предлагаются вопросы к экзамену и тестовые материалы, где каждый вариант содержит задания, разработанные в рамках основных тем учебной дисциплины и включающие терминологические задания.

Фонд оценочных средств являются составной частью учебно-методического обеспечения процедуры оценки качества освоения образовательной программы и обеспечивает повышение качества образовательного процесса и входит, как приложение, в состав рабочей программы дисциплины.

Основные методические указания для обучающихся по дисциплине указаны в разделе основная и дополнительная литература.