МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА (МИИТ)»

УТВЕРЖДАЮ:

Директор ИТТСУ

П.Ф. Бестемьянов

08 сентября 2017 г.

Кафедра «Управление и защита информации»

Автор Стряпкин Леонид Игоревич, старший преподаватель

АННОТАЦИЯ К РАБОЧЕЙ ПРОГРАММЕ ДИСЦИПЛИНЫ

«Электроника и схемотехника»

Специальность: 10.05.01 – Компьютерная безопасность

Специализация: Информационная безопасность объектов

информатизации на базе компьютерных систем

Квалификация выпускника: Специалист по защите информации

Форма обучения: очная

Год начала подготовки 2017

Одобрено на заседании

Учебно-методической комиссии института

Протокол № 1

06 сентября 2017 г.

Председатель учебно-методической

комиссии

Одобрено на заседании кафедры

Протокол № 2 04 сентября 2017 г. Заведующий кафедрой

Л.А. Баранов

С.В. Володин

1. Цели освоения учебной дисциплины

Основной целью изучения учебной дисциплины «Электроника и схемотехника» является формирование у обучающегося компетенций для следующих видов деятельности: научно-исследовательская, эксплуатационная, организационно-управленческая, контрольно-аналитическая, проектная.

Дисциплина предназначена для получения знаний для решения следующих профессиональных задач (в соответствии с видами деятельности):

- -научно-исследовательская;
- -проектная;
- -контрольно-аналитическая;
- -организационно-управленческая;
- -эксплуатационная.

Дисциплина предназначена для получения знаний для решения следующих профессиональных задач (в соответствии с видами деятельности):

Научно-исследовательская деятельность:

- -сбор, обработка, анализ и систематизация научно-технической информации, отечественного и зарубежного опыта по проблемам компьютерной безопасности;
- -изучение и обобщение опыта работы других учреждений, организаций и предприятий по способам использования методов и средств обеспечения информационной безопасности с целью повышения эффективности и совершенствования работ по защите информации на конкретном объекте;
- -подготовка научно-технических отчетов, обзоров, публикаций по результатам выполненных исследований.

Проектная деятельность:

- -разработка технических заданий на проектирование, эскизных, технических и рабочих проектов систем и подсистем защиты информации с учетом действующих нормативных и методических документов;
- -разработка проектов систем и подсистем управления информационной безопасностью объекта в соответствии с техническим заданием.

Контрольно-аналитическая деятельность:

- -предварительная оценка, выбор и разработка необходимых методик поиска уязвимостей;
- -применение методов и методик оценивания безопасности компьютерных систем при проведении контрольного анализа системы защиты;
- -подготовка аналитического отчета по результатам проведенного анализа и выработка предложений по устранению выявленных уязвимостей.

Организационно-управленческая деятельность:

- -организация работы коллектива исполнителей, принятие управленческих решений в условиях спектра мнений, определение порядка выполнения работ;
- -поиск рациональных решений при разработке средств защиты информации с учетом требований качества, надежности и стоимости, а также сроков исполнения.

Эксплуатационная деятельность:

-обеспечение восстановления работоспособности систем защиты информации при возникновении нештатных ситуаций

Содержание дисциплины «Электроника и схемотехника» состоит в изучении студентами физических процессов, происходящих в дискретных полупроводниковых приборах и интегральных схемах (ИС), их устройства, параметров и характеристик; принципов построения и функционирования типовых аналоговых, импульсных и цифровых устройств, а также основных методов их расчета. Задачей изучения дисциплины является приобретение теоретических и практических знаний принципов действия, свойств и параметров полупроводниковых приборов и интегральных микросхем, принципов работы

и областей применения аналоговых, импульсных и цифровых электронных устройств, применяемых в системах автоматики.

Кроме того, студент должен научиться обосновывать структуру электронного устройства, производить приближенные расчеты его основных параметров и правильно выбирать элементную базу.

2. Место учебной дисциплины в структуре ОП ВО

Учебная дисциплина "Электроника и схемотехника" относится к блоку 1 "Дисциплины (модули)" и входит в его базовую часть.

3. Планируемые результаты обучения по дисциплине (модулю), соотнесенные с планируемыми результатами освоения образовательной программы

Процесс изучения дисциплины направлен на формирование следующих компетенций:

ОПК-1	способностью анализировать физические явления и процессы при
	решении профессиональных задач
ПК-12	способностью проводить инструментальный мониторинг защищенности
	компьютерных систем

4. Общая трудоемкость дисциплины составляет

5 зачетных единиц (180 ак. ч.).

5. Образовательные технологии

Преподавание дисциплины «Электроника и схемотехника» осуществляется в форме лекций и практических занятий. Лекции проводятся в традиционной классноурочной организационной форме, по типу управления познавательной деятельностью на 30 % являются традиционными классически-лекционными (объяснительноиллюстративные), и на 70 % с использованием интерактивных (диалоговых) технологий, в том числе мультимедиа лекция. Практические занятия организованы в виде учебнолабораторных исследований, и проводятся с применением измерительного оборудования и технологий имитационного моделирования. Защита работ позволяет как преподавателю, так и студенту оценить полученные знания по дисциплине. Самостоятельная работа студента организована с использованием традиционных видов работы и интерактивных технологий. К традиционным видам работы относятся отработка лекционного материала и отработка отдельных тем по учебным пособиям. К интерактивным (диалоговым) технологиям) относиться отработка отдельных тем по электронным пособиям, подготовка к промежуточным контролям в интерактивном режиме, интерактивные консультации в режиме реального времени по специальным разделам и технологиям, основанным на коллективных способах самостоятельной работы студентов. Оценка полученных знаний, умений и навыков основана на модульно-рейтинговой технологии. Фонды оценочных средств освоенных компетенций включают как вопросы теоретического характера для оценки знаний, так и задания практического содержания (решение конкретных задач, работа с данными) для оценки умений и навыков. Теоретические знания проверяются путём применения таких организационных форм, как индивидуальные и групповые опросы (при защите работ), решение тестов с использованием компьютеров или на бумажных носителях...

6. Содержание дисциплины (модуля), структурированное по темам (разделам)

Введение в проблемную область

Введение в проблемную область. Электроника как наука. Краткая история электроники. Разделы электроники. Роль электроники в системах управления. Виды электрических схем.

РАЗДЕЛ 2

Основы теории электрических цепей

Тема 1. Электрические цепи постоянного и переменного тока. Комплексное представление электрических величин. АЧХ и ФЧХ. Понятие о переходных процессах в электрических цепях.

Тема 2. Простейшие пассивные RC и RL- цепи, последовательный и параллельный колебательный контур. Общие сведения об электрических фильтрах.

РАЗДЕЛ 3

Физические основы полупроводниковых приборов

Тема 1. Р-п-переход.

Тема 2. Основные типы полупроводниковых диодов, их параметры и характеристики.

РАЗДЕЛ 4

Выпрямительные устройства

Однополупериодный и двухполупериодный выпрямители. Мостовой выпрямитель. Сглаживающие фильтры.

РАЗДЕЛ 5

Анализ схем, построенных на базе полупроводниковых диодов и стабилитронов Параметрический стабилизатор напряжения.

Ограничители амплитуды импульсных сигналов.

РАЗДЕЛ 6

Биполярные транзисторы.

Тема 1. Структура, принцип действия, режимы работы биполярного транзистора

Тема 2. Схемы включения, статические характеристики и основные параметры биполярных транзисторов. Составные транзисторы.

РАЗДЕЛ 7

Общие сведения об электронных усилителях

Общие параметры электронных усилителей. Схема замещения, параметры и классификация усилителей. Разновидности искажений сигналов в усилителях.

РАЗДЕЛ 8

Обратные связи в усилителях

Положительная и отрицательная обратная связь (OC) в усилителях. Классификация ОС. Влияние ОС на параметры усилителей.

РАЗДЕЛ 9

Усилительные каскады на биполярных транзисторах

Тема 1. Усилительные каскады на биполярных транзисторах, включенных по схемам ОЭ, ОБ, ОК.

Тема 2. Резонансные усилительные каскады. Двухтактные выходные каскады.

РАЗДЕЛ 10

Электронные ключи на биполярных транзисторах

Статический и динамический режимы работы ключа. Ключ как логический элемент и как силовое коммутационное устройство.

Нагрузочная способность и быстродействие ключа.

РАЗДЕЛ 11

Полевые транзисторы и схемы с их использованием

Тема 1. Полевые транзисторы: с управляющим р-п-переходом, МДП-транзисторы

Тема 2. Усилительные каскады на полевых транзисторах. Ключи на МДП транзисторах.

РАЗДЕЛ 12

Цифровые интегральные микросхемы

Понятие степени интеграции ЦИМС, классификация. Комбинационные и последовательностные схемы. Базовые элементы ЦИМС серий КМОП и ТТЛ.

РАЗДЕЛ 13

Комбинационные схемы

Шифраторы, дешифраторы, распределители, мультиплексоры.

РАЗДЕЛ 14

Последовательностные схемы.

Триггеры. Простейший триггер на транзисторах (бистабильная ячейка). RS, D, T, JK-триггеры на логических элементах. Счётчики импульсов, регистры сдвига, параллельные регистры, распределители импульсов.

РАЗДЕЛ 15

Регенеративные импульсные устройства

Одновибраторы и мультивибраторы на биполярных транзисторах и логических элементах. Генераторы линейно изменяющегося напряжения.

Кварцевые тактовые генераторы с делением частоты.

РАЗДЕЛ 16

Компоненты оптоэлектроники и технические средства отображения информации Светодиоды, фотодиоды, фототранзисторы, оптроны и их применение. Светодиодные матрицы и жидкокристаллические индикаторы.

РАЗДЕЛ 17

Операционные усилители и их применение

Тема 1. Операционные усилители (ОУ): структурная схема, основные параметры, схемы включения.

Тема 2. Неинвертирующий, инвертирующий, интегрирующий, дифференцирующий усилители на ОУ. Сумматор аналоговых сигналов на ОУ. Компараторы. Триггер Шмитта и мультивибратор на ОУ.

РАЗДЕЛ 18

Генераторы синусоидальных сигналов

Тема 1. Генераторы сигналов на транзисторах и операционных усилителях. RC-генераторы, LC-генераторы.

Тема 2. Генератор синусоидального сигнала на ОУ с мостом Вина и схемой АРУ.

РАЗДЕЛ 19

Общие сведения о сопряжении цифровых и аналоговых устройств

Аналогово-цифровые (АЦП) и цифро-аналоговые (ЦАП) преобразователи: основные параметры и характеристики.

Выбор частоты дискретизации.

ЦАП по методу весовых токов с использованием матрицы R-2R.

Схема выборки-хранения.

АЦП параллельного типа.

РАЗДЕЛ 20

Вторичные источники электропитания

Структурные схемы вторичных источников электропитания радиоэлектронной аппаратуры.

Компенсационный стабилизатор напряжения.

Общие сведения об импульсных источниках питания.

Экзамен