МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 11.03.02 Инфокоммуникационные технологии и системы связи, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Электроника

Направление подготовки: 11.03.02 Инфокоммуникационные

технологии и системы связи

Направленность (профиль): Оптические системы и сети связи

Форма обучения: Заочная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 167365

Подписал: заведующий кафедрой Бугреев Виктор Алексеевич

Дата: 21.04.2025

1. Общие сведения о дисциплине (модуле).

Целью освоения учебной дисциплины «Электроника» является формирование у обучающихся общепрофессиональных компетенций и приобретение ими:

- знаний об основных типах и областях применения электронных приборов и устройств; о принципах действия, параметрах и характеристиках современных полупроводниковых, электровакуумных и газоразрядных устройств (усилителей, генераторов, вторичных источников питания, цифровых преобразователей, микропроцессорных управляющих и измерительных комплексов);
- умений использовать методы расчета и измерения параметров аналоговых и цифровых устройств; разрабатывать принципиальные электрические схемы; проектировать типовые электрические и электронные устройства;
- навыков измерения параметров электронных приборов; расчета усилителей, генераторов, импульсных и цифровых устройств; измерения параметров усилителей, импульсных и цифровых устройств.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ОПК-1 - Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Владеть:

- навыков измерения параметров электронных приборов; расчета усилителей, генераторов, импульсных и цифровых устройств; измерения параметров усилителей, импульсных и цифровых устройств.

Знать:

- знаний об основных типах и областях применения электронных приборов и устройств; о принципах действия, параметрах и характеристиках современных полупроводниковых, электровакуумных и газоразрядных устройств (усилителей, генераторов, вторичных источников питания,

Уметь:

- умений использовать методы расчета и измерения параметров аналоговых и цифровых устройств; разрабатывать принципиальные электрические схемы; проектировать типовые электрические и электронные устройства;
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №2
Контактная работа при проведении учебных занятий (всего):	8	8
В том числе:		
Занятия лекционного типа	4	4
Занятия семинарского типа	4	4

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 100 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).

4.1. Занятия лекционного типа.

№	Тематика лекционных занятий / краткое содержание		
Π/Π	тематика лекционных занятии / краткое содержание		
1	Раздел 1. Общие сведения о важнейших этапах развития и элементах электроники.		
	Составные части дисциплины. Важнейшие этапы развития электроники.		
	Физические основы полупроводниковой электроники. Электрофизические свойства		
	полупроводников. Электропроводность полупроводников и влияние температуры. Генерация и		
рекомбинация, время жизни носителей заряда. р-п переход и его свойства. Разновидност			
электрических переходов и методы их создания. Параметры р-п перехода: ширина обедне			
слоя, высота потен-циального барьера, емкость перехода.			
	Типы элементов радиоэлектронных схем.		
2	Раздел 2. Полупроводниковые приборы.		
	Полупроводниковые диоды. Вольт-амперная характеристика (ВАХ) р-п перехода и реального		
	диода. Виды пробоя. Зависимость ВАХ от температуры. Разновидности полупроводниковых		
	диодов: выпрямительные, импульсные, стабилитроны, варикапы, туннельные и обращенные, СВЧ-		
	диоды. Особенности конструкции, основные характеристики, параметры и их зависимость от		
	внешних условий.		
	Биполярные транзисторы. Виды структуры, режимы работы, схемы включения. Физические		
	параметры (коэффициенты передачи тока в схемах ОЭ, ОБ и ОК). Статические характеристики в		
	схемах ОЭ и ОБ и их зависимость от температуры. Конструктивно-технологические разновидности		
	дискретных транзисторов.		
Устройство, принцип действия и классификация полевых транзисторов с управляющим р-п			
переходом и переходом металл-диэлектрик-полупроводник (МДП), их достоинства и не			
Физические параметры (напряжение отсечки и пороговое, внутреннее сопротивление			
полевых транзисторов с управляющим р-п переходом, их режимная и температурная зависим			
ВАХ транзисторов в схеме с общим истоком. Устройство и принцип действия МДП-транзисторов с индуцированным и встроенным канала			
Физические параметры, ВАХ и их зависимость от температуры. Работа полевого транзистора			
	ключевом режиме, импульсные параметры. Конструктивно-технологические разновидности полевых транзисторов.		
	Тиристоры, их типы и принцип действия. Схема включения, ВАХ и параметры динистора. Принцип		
	действия тринцстора, типы и параметры. Симисторы, их типы и принцип действия. Схема		
	включения, ВАХ и параметры.		
	Светодиоды. Устройство, принцип действия, параметры и характеристики.		
	Фотоприемники (фоторезисторы, фотодиоды, фототранзисторы, фототиристоры). Устройство,		
	принцип действия, параметры и характеристики.		
	Оптроны, их типы и параметры. Средства отображения информации.		
	Усилители. Виды каскадов усилителей, основные прараметры и характеристики усилителей.		
	Операционные усилители, основные схемы включения. Генераторы на основе операционных		
усилителей, их параметры и характеристики. Генераторы гармонических колебаний, услови			
	баланса амплитуд и фаз, основные схемы и параметры.		
Источники вторичного электропитания, структуры источников. Силовые устройства на осно			
	мощных тиристоров и транзисторов (управляемые выпрямители, инверторы и преобразователи		
	частоты).		
	Основы схемотехники цифровых устройств. Алгебра логики. Ключевые схемы. Логические		
	элементы интегральных микросхем. Дешифраторы и шифраторы, распределители и		
	мультиплексоры, сумматоры, тригтеры.		
	Типы интегральных микросхем по технологии изготовления и видам обрабатываемого сигнала		
(аналоговые, цифровые, аналого-цифровые).			
3	Допуск к экзамену.		

№ п/п	Тематика лекционных занятий / краткое содержание	
4	Экзамен.	

4.2. Занятия семинарского типа.

Лабораторные работы

№ п/п	Наименование лабораторных работ / краткое содержание
1	Исследование полупроводниковых диодов
2	Исследование однофазных неуправляемых и управляемых выпрямителей

4.3. Самостоятельная работа обучающихся.

$N_{\underline{0}}$	Вид самостоятельной работы		
Π/Π	Вид самостоятсльной расоты		
1	Работа с теоретичеким (лекционным) материалом.		
2	Подготовка к лабораторным занятиям.		
3	Самостоятельное изучение разделов (тем) дисциплины(модуля); работа с		
	литературой.		
4	Подготовка к контрольной работе.		
5	Подготовка к промежуточной аттестации.		

4.4. Примерный перечень тем контрольных работ

Темой контрольные работы является «Применение полупроводниковых приборов в схемах однофазных регуляторов мощности»

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Электротехника и электроника: учебник	
	Кузовкин, Владимир Александрович. / В. А.	https://urait.ru/bcode/535790.
	Кузовкин, В. В. Филатов Электронные	
	текстовые данные. Учебник - М.: Юрайт, 2024.	
	- 433 с (Высшее образование)., 2024	
2	Силовая электроника: учебник и практикум	
	Розанов, Юрий Константинович / Ю. К.	https://urait.ru/bcode/536504.
	Розанов, М. Г. Лепанов; под ред. Ю. К.	
	Розанова Электронные текстовые данные.	
	Учебник - M. : Юрайт, 2024 206 c (Высшее	
	образование)., 2024	

3	Электротехника и электроника: учебник	
	Новожилов, Олег Петрович. / О. П. Новожилов.	https://urait.ru/bcode/530807
	-	inteps.// drait.i.d/ ocode/ 550007
	- 2-е изд., испр. и доп Электронные текстовые	
	данные. Учебник - М.: Юрайт, 2023 653 с	
	(Бакалавр. Академический курс)., 2023	
4	Электроника и преобразовательная техника:	
	учебник: в 2 т. Т. 1 : Электроника 2015 479	https://umczdt.ru/read/18647/?page=1
	с. : ил Библиогр.: с. 476 700 экз ISBN 978-	
	5-89035-796-0 (в пер.) Бурков, Анатолий	
	Трофимович. / А. Т. Бурков ; рец. Ф. Д.	
	Железнов. Учебник - М.: Учебно-метод. центр	
	по образованию на жд. трансп., 2015	
	(Высшее образование) (Учебник для	
	специалистов) (ФГОС)., 2015	
5	Электроника и преобразовательная техника:	
	учебник: в 2 т. Т. 2: Электронная	https://umczdt.ru/read/18648/?page=1
	преобразовательная техника 2015 306 с	
	Библиогр.: с. 302-303 700 экз ISBN 978-5-	
	89035-797-7 (в пер.) Бурков, Анатолий	
	Трофимович. / А. Т. Бурков ; рец. Ф. Д.	
	Железнов. Учебник - М.: Учебно-метод. центр	
	по образованию на жд. трансп., 2015	
	(Высшее образование) (Учебник для	
	специалистов) (ФГОС)., 2015	

- 6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).
 - 1. Официальный сайт МИИТ http://miit.ru/
- 2. Электронно-библиотечная система POAT http://www.biblioteka.rgotups.ru/
- 3. Электронно-библиотечная система Научно-технической библиотеки МИИТ http://library.miit.ru/
- 4. Электронно-библиотечная система издательства «Лань» http://e.lanbook.com/
- 5. Электронно-библиотечная система «ЮРАЙТ» http://www.biblio-online.ru/
- 6. Электронно-библиотечная система «ZNANIUM.COM» http://www.znanium.com/
- 7. Перечень современных профессиональных баз данных и информационных справочных систем http://sdo.roat-rut.ru

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Программное обеспечение должно позволять выполнить все предусмотренные учебным планом виды учебной работы по дисциплине: лекции, практические работы, лабораторные работы, выполнение курсовой работы. Все необходимые для изучения дисциплины учебно-методические материалы объединены в Учебно-методический комплекс и размещены на сайте университета.

При осуществлении образовательного процесса по дисциплине используются следующие информационные технологии, программное обеспечение и информационные справочные системы:

- для проведения лекций, демонстрации презентаций и ведения интерактивных занятий: Microsoft Office 2003 и выше.
- для выполнения текущего контроля успеваемости: Браузер Internet Explorer 6.0 и выше.
 - для выполнения практических заданий: Microsoft Office 2003 и выше.
- для самостоятельной работы студентов: операционная система Windows, Microsoft Office 2003 и выше, Браузер Internet Explorer 8.0 и выше с установленным Adobe Flash Player версии 10.3 и выше, Adobe Acrobat.
- для оформления отчетов и иной документации: Microsoft Office 2003 и выше.
- для осуществления учебного процесса с использованием дистанционных образовательных технологий: операционная система Windows, Microsoft Office 2003 и выше, Браузер Internet Explorer 8.0 и выше с установленным Adobe Flash Player версии 10.3 и выше, Adobe Acrobat.
- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Требования к аудиториям (помещениям, кабинетам) для проведения занятий с указанием соответствующего оснащения

Учебная аудитория для проведения занятий соответствует требованиям охраны труда по освещенности, количеству рабочих (посадочных) мест студентов и качеству учебной (аудиторной) доски, а также соответствовать условиям пожарной безопасности. Освещённость рабочих мест соответствует действующим СНиПам.

Кабинеты оснащены следующим оборудованием, приборами и расходными материалами, обеспечивающими проведение предусмотренных учебным планом занятий по дисциплине:

-для проведения лекций, демонстрации презентаций и ведения интерактивных занятий: переносной проектор и компьютер с минимальными требованиями -Pentium 4, ОЗУ 4 ГБ, HDD 100 ГБ, USB 2,0.

- для выполнения текущего контроля успеваемости: учебная аудитория для проведения занятий;
- для проведения практических занятий: учебная аудитория для проведения занятий;
- для организации самостоятельной работы студентов: учебная аудитория для проведения занятий;
- для выполнения текущего контроля успеваемости: учебная аудитория для проведения занятий.

Перечень лабораторного оборудования Лабораторное оборудование не предусмотрено.

9. Форма промежуточной аттестации:

Зачет во 2 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, к.н. кафедры «Электрификация и электроснабжение»

С.Л. Рудницкий

Согласовано:

Заведующий кафедрой СУТИ РОАТ А.В. Горелик

Заведующий кафедрой ЭЭ РОАТ В.А. Бугреев

Председатель учебно-методической

комиссии С.Н. Климов