МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 08.03.01 Строительство, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Электротехника и электромеханика

Направление подготовки: 08.03.01 Строительство

Направленность (профиль): Рельсовые пути городского транспорта

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 3221

Подписал: заведующий кафедрой Шевлюгин Максим

Валерьевич

Дата: 28.05.2024

1. Общие сведения о дисциплине (модуле).

Целью изучения дисциплины «Электротехника и электромеханика» является освоение теоретических основ электротехники, приобретение знаний о конструкциях, принципах действия, параметрах и характеристиках различных электротехнических устройств.

Задачами изучения дисциплины «Электротехника и электромеханика» студентами являются:

- сформировать представлений о совокупности теоретических и практических знаний в области электрических цепей;
- наработать учебные приемы и методы анализа типовых электрических цепей;
- освоить основные принципы работы электрических устройств и различных конструкций трансформаторов;
- выработать стратегии применения различных методов расчета электрических и магнитных цепей;
- усовершенствовать полученные учебные навыки, необходимые для производства расчетов параметров трехфазной электрической цепи;
- научиться практическому применению безопасной работы с электрооборудованием.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-5** Способен участвовать в инженерных изысканиях, необходимых для строительства и реконструкции объектов строительства и жилищно-коммунального хозяйства;
- **ОПК-6** Способен участвовать в проектировании объектов строительства и жилищно-коммунального хозяйства, в подготовке расчетного и технико-экономического обоснований их проектов, участвовать в подготовке проектной документации, в том числе с использованием средств автоматизированного проектирования и вычислительных программных комплексов;
- **ПК-6** Способен руководить производством работ по строительству, реконструкции и ремонту зданий и сооружений, в том числе работами по строительству, реконструкции, ремонту и текущему содержанию рельсового пути городского транспорта и искусственных сооружений;
- **ПК-9** Способен организовывать и выполнять инженерные изыскания, разрабатывать проекты реконструкции и ремонта рельсовых путей

городского транспорта и искусственных сооружений, осуществлять авторский контроль.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- основные законы электротехники;
- методы расчёта электрических цепей;
- основные законы магнитных цепей;
- теорию трёхфазных цепей;
- теорию переходных процессов в электрических цепях;
- -устройство и принцип действия трансформаторов;
- -принцип действия и область применения основных электротехнических устройств.

Уметь:

- -применять основные законы электротехники и методы, необходимые для расчёта электрических цепей;
- -рассчитывать разветвленные электрические цепи однофазного синусоидального тока;
 - выполнять расчеты трехфазных и магнитных цепей;
 - анализировать режимы работы трансформаторов.

Владеть:

- -методиками проектирования и расчета цепей постоянного и переменного тока; магнитных цепей; техфазных цепей и трансформаторов;
 - полученными навыки работы с электроизмерительными приборами;
 - методами экспериментального исследования электрических цепей;
 - программными средства моделирования электрических сетей.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 2 з.е. (72 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №6
Контактная работа при проведении учебных занятий (всего):	32	32
В том числе:		
Занятия лекционного типа	16	16
Занятия семинарского типа	16	16

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 40 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).

4.1. Занятия лекционного типа.

№	Тематика лекционных занятий / краткое содержание		
п/п			
1	Электрический ток.		
	Рассматриваемые вопросы: Электродвижущая сила, разность потенциалов. Идеализированный		
	источник ЭДС, идеализированный источник тока, реальный источник электроэнергии и его пред-		
	ставление эквивалентными схе-мами. Электрическая цепь и ее схема, ветвь, узел, контур. Закон		
	Джоуля-Ленца. Закон Ома.		
2	Линейные цепи постоянного тока.		
	Рассматриваемые вопросы: Расчет эквивалентных сопротивлений. Виды соединения сопротивлений		
	(последовательное, параллельное и смешанное соединение со-противлений). Соединение		
	сопротивлений по схеме «звезда» и «треугольник».		
3	Методы решения цепей постоянного тока.		
	Рассматриваемые вопросы: Методы решения электротехнических задач (метод расчета схем с		
	непосредственным применением законов Кирхгофа, метод узловых потенциалов, метод контурных		
	токов, матричный метод).		
4	Синусоидальный электрический ток.		
	Рассматриваемые вопросы: Переменный (синусоидальный) электрический ток и основные		
	характеризующие его величины. Изображение синусоидальных функций времени в виде		
	комплексных чисел. Действия с комплексными числами. Ком-плексный (символический) метод		
	расчета цепей синусоидального тока. Простейшие цепи синусоидального тока (цепи переменного		

№ п/п	Тематика лекционных занятий / краткое содержание		
	тока с активным, индуктивным и емкостным сопротивлениями). Резонансные явления (резонанс напряжений, резонанс токов). Расчет сложных цепей переменного однофазного тока.		
5	Трехфазные цепи.		
	Рассматриваемые вопросы: Основные соотношения. Соединения звездой (симметричный и несимметричный режим). Соединение треугольником (симметричный и несимметричный режим).		
6	Магнитные цепи.		
	Рассматриваемые вопросы: Основные магнитные величины. Основные законы магнитных цепей.		
	Закон Ома и законы Кирхгофа для магнитной цепи. Расчет магнитных цепей при постоянном		
	магнитном потоке. Расчет неразветвленных магнитных цепей. Расчет разветвленных магнитных		
	цепей (прямая задача).		
7	Многополюсники.		
	Рассматриваемые вопросы: Определение многополюсников. Основные уравнения		
	четырёхполюсников. Схемы замещения четырёхполюсников.		
8	Полупроводниковые приборы.		
	Рассматриваемые вопросы: Полупроводниковые приборы: диоды, тиристоры, транзисторы.		

4.2. Занятия семинарского типа.

Практические занятия

No॒	Томотимо произвимоским роматий/кротисо со нерукоми		
Π/Π	Тематика практических занятий/краткое содержание		
1	Электрический ток.Линейные цепи постоянного тока. Расчет электрический цепей		
	постоянного тока.		
	В результате проведения практического занятия рассматривались следующие вопросы:		
	-Линейные цепи постоянного тока.		
	-Расчет электрических цепей постоянного тока.		
2	Методы решения электротехнических задач.		
	В результате проведения практического занятия рассматривались следующие вопросы:		
	-Метод контурных токов.		
	-Метод применения законов Кирхгофа.		
	-Метод узловых потенциалов.		
3	Расчет электрических цепеей переменного (синусоидального) тока.		
	В результате проведения практического занятия рассматривались следующие вопросы:		
	-Расчет электрических цепей переменного тока в классическом виде.		
	-Расчет электрических цепей переменного тока символическим методом.		
4	Расчет магнитных цепей.		
	В результате проведения практического занятия рассматривались следующие вопросы:		
	-Расчет магнитных цепей постоянного тока.		
	-Расчет цепей (прямая задача).		
	-Расчет цепей (обратная задача).		
5	Расчет четырехполюсников		
	В результате проведения практического занятия рассматривались следующие вопросы:		
	-Основное уравнение четырехполюсника.		
	-Расчет четырехполюсников Т-образной схемы замещения.		
	-Расчет четырехполюсников П-образной схемы замещения.		
6	Полупроводниковые приборы в электронике.		
	В результате проведения практического занятия рассматривались следующие вопросы:		

№ п/п	Тематика практических занятий/краткое содержание		
	-Особенности ВАХ диодов.		
	-Особенности ВАХ тиристоров.		
7	Исследование схемы транзисторного ключа, эмиттерного повторителя и составного		
	транзистора.		
	В результате проведения практического занятия рассматривались следующие вопросы:		
	-Особенности ВАХ диодов.		
	-Особенности ВАХ тиристоров.		
8	Однофазный трансформатор.		
	В результате проведения практического занятия рассматриваются следующие вопросы:		
	Определение параметров трансформатора однофазного. Работа трансформатора в режиме холостого		
	хода, короткого замыкания и в рабочем режиме. Постороение внешней характеристики		
	трансформатора.		

4.3. Самостоятельная работа обучающихся.

	<u> </u>
№ п/п	Вид самостоятельной работы
1	Работа с лекционным материалом, литературой, самостоятельное изучение
	разделов дисциплины(модуля).
2	Повторение пройденного теоретического материала.
3	Решение домашних заданий по темам.
4	Подготовка к практическим занятиям.
5	Подготовка к промежуточной аттестации.
6	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Афанасьев, А. Ю. Теоретические основы электротехники: учебное пособие / А. Ю. Афанасьев. — Вологда: Инфра-Инженерия, 2023. — 208 с. — ISBN 978-5-9729-1387-9.	URL: https://e.lanbook.com/book/347750 (дата обращения: 15.06.2025). — Текст: электронный.
2	Атабеков, Г. И. Теоретические основы электротехники. Линейные электрические цепи: учебник для СПО / Г. И. Атабеков. — 4-е изд., стер. — Санкт-Петербург: Лань, 2024. — 592 с. — ISBN 978-5-507-50131-1.	URL: https://e.lanbook.com/book/412190 (дата обращения: 15.06.2025). — Текст: электронный.
3	Бладыко, Ю. В. Сборник задач по электротехнике и электронике : учебное пособие / Ю. В. Бладыко. — 2-е изд., испр. — Минск : Вышая школа, 2013. — 478 с. — ISBN 978-985-06-2287-7.	URL: https://e.lanbook.com/book/65419 (дата обращения: 15.06.2025). —

4	Электротехника в упражнениях и задачах : учебное пособие / Е. И. Алгазин, В. В. Богданов, О. Б. Давыденко [и др.]. — Новосибирск : НГТУ,	URL: https://e.lanbook.com/book/216116 (дата обращения: 15.06.2025). —
	2021. — 94 c. — ISBN 978-5-7782-4365-1.	
5	Марченко, А. Л. Лабораторный практикум по электротехнике и электронике в среде Multisim: учебное пособие / А. Л. Марченко, С. В. Освальд. — Москва: ДМК Пресс, 2010. — 448 с. — ISBN 978-5-94074-593-8.	URL: https://e.lanbook.com/book/897 (дата обращения: 15.06.2025). — Текст : электронный.
6	Чернышов, Н. Г. Общая электротехника : учебное пособие / Н. Г. Чернышов, Т. Ю. Дорохова. — Тамбов : ТГТУ, 2018. — 84 с. — ISBN 978-5-8265-1861-8.	URL: https://e.lanbook.com/book/319820 (дата обращения: 15.06.2025) — Текст: электронный.
7	Никифоров, И. К. Электронная аппаратура. Диоды и тиристоры, их особенности и применение. Оптоэлектронные приборы: учебное пособие / И. К. Никифоров. — Вологда: Инфра-Инженерия, 2023. — 800 с. — ISBN 978-5-9729-1231-5.	URL: https://e.lanbook.com/book/347786 (дата обращения: 15.06.2025). — Текст: электронный.

- 6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).
 - 1.Официальный сайт РУТ (МИИТ) (https://www.miit.ru/).
 - 2.Официальный сайт ОАО «РЖД» (https://www.rzd.ru/).
 - 3. Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru/).
 - 4.Информационный портал Научная электронная библиотека eLIBRARY.RU (www.elibrary.ru/).
- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).
 - 1. Microsoft Internet Explorer.
 - 2. Операционная система Microsoft Windows.
- 3. Microsoft Office 365 (Microsoft Word, Microsoft Excel, Microsoft Power Point).
- 4. При проведении занятий с применением электронного обучения и дистанционных образовательных технологий, могут применяться следующие средства коммуникаций:

ЭИОС РУТ (МИИТ), Microsoft Teams, электронная почта.

- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).
- 1.Учебные аудитории для проведения занятий лекционного типа, оснащенные компьютерной техникой и наборами демонстрационного оборудования:
 - мультимедийным проектором;
 - интерактивной доской.
- 2. Комплект лабораторного и измерительного оборудования для проведения лабораторных работ (стендовое исполнение) включает в себя:
 - -Измерительные приборы (амперметры, вольтметры, ваттметры).
 - -Цифровой осциллограф.
 - -Функциональный генератор.
 - -Регулируемый источник питания.
 - -Трехфазный генератор.
- 3. Аудитории кафедры для проведения практических занятий, оснащенные следующим оборудованием:
- персональными компьютерами с предустановленным программным обеспечением и с подключением к сети INTERNET и минимальными требованиями Intel(R)CORE 2 DUO, ОЗУ 4 ГБ.
 - 9. Форма промежуточной аттестации:

Экзамен в 6 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, к.н. кафедры

«Электроэнергетика транспорта» Е.Ю. Семенова

Согласовано:

Заведующий кафедрой ППХ Е.С. Ашпиз

Заведующий кафедрой ЭЭТ М.В. Шевлюгин

Председатель учебно-методической

комиссии М.Ф. Гуськова