МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 15.03.05 Конструкторско-технологическое обеспечение машиностроительных производств, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Электрофизические и электрохимические методы обработки

Направление подготовки: 15.03.05 Конструкторско-технологическое

обеспечение машиностроительных

производств

Направленность (профиль): Технология машиностроения

Форма обучения: Заочная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

D подписи: 87771

Подписал: заведующий кафедрой Куликов Михаил Юрьевич

Дата: 01.06.2024

1. Общие сведения о дисциплине (модуле).

Целью освоения курса дисциплины является ознакомление студентов с основами механической обработки деталей подвижного состава, технологическими возможностями и устройством типовых металлорежущих станков, используемой на них технологической оснастки, режущих и контрольно-измерительных инструментов.

Основными задачами курса является:

- изучение базовых основ различных методов механической и физико-иехнической обработки материалов;
- изучение основных закономерностей изменения функциональных параметров процессов механической и физико-технической обработки от условий и требований обработки;
- изучение типов и основ выбора станочного оборудования, технологических приспособлений, режущих и контрольно-измерительных инструментов.

Основные знания, приобретаемые студентами при изучении дисциплины, должны обеспечивать ему базовые представление о возможных видах и способах механической и физико-технической обработки материалов при изготовлении и ремонте деталей подвижного состава. Изучение указанной дисциплины в системе подготовки дает студентам возможность самостоятельно приступить к проектированию процессов механической обработки при изготовлении и ремонте подвижного состава; правильно выбирать соответствующее технологическое оборудование, станочную оснастку, режущий и контрольно-измерительный инструмент

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ПК-1 - Способен к проектированию технологических процессов машиностроительных производств.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

современные металлорежущие станки, станочные приспособления, режущий и контрольно-измерительный инструмент;

основные закономерности различных процессов механической и физико технической обработки материалов;

требования к основным видам станочного оборудования, технологической оснастке, режущему и контрольно-измерительному инструменту для различных производственных условий предприятий по изготовлению и ремонту деталей подвижного состава.

Уметь:

анализировать и устанавливать закономерности взаимодействия и взаимозависимости явлений, протекающих в процессе механической и физико-технической обработки материалов;

проектировать процессы и операции механической и физикотехнической обработки для предприятий по изготовлению и ремонту подвижного состава;

эффективно использовать металлорежущие станки, приспособления, режущий и контрольно-измерительный инструмент при изготовлении, ремонте и техническом обслуживании подвижного состава, а также при производстве его запасных частей.

Владеть:

базовыми навыками выбора типов и параметров технологического оснащения при проектировании технологических процессов при изготовлении и ремонте деталей подвижного состава в различных производственных условиях.

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 4 з.е. (144 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тин имабил у заматий	Количество часов	
Тип учебных занятий		Семестр №8
Контактная работа при проведении учебных занятий (всего):	24	24
В том числе:		
Занятия лекционного типа	10	10
Занятия семинарского типа	14	14

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 120 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

No	Тематика лекционных занятий / краткое содержание		
Π/Π			
1			
	Тема 1. Основные задачи и содержание курса.		
	Рассматриваемые вопросы::		
	- исторические аспекты, тенденции и основные этапы развития науки;		
	- место и значение механической и физико-технической обработки среди других методов		
	размерного формообразования поверхностей;		
	- классификация методов механической и физико-технической обработки на металлорежущих		
	станках;		
	- современное развитие станкостроительной и инструментальной промышленности России и		
	ведущих зарубежных стран;		
	- принципы классификации металлорежущих станков;		
	- принципы классификации режущих инструментов;		
	- принципы классификации станочных приспособлений; - принципы классификации контрольно-измерительных инструментов.		
	Тема 2. Теоретические основы механической и физико-технической обработки.		
	Рассматриваемые вопросы:		
	- производственный и технологический процессы;		
	- структура технологического процесса;		
	- типы производства и характеристика их производственных процессов;		
	- особенности проектирования технологических процессов механической обработки на станках с		
	чис-ловых программным управлением (ЧПУ);		
	- классификация обрабатываемых поверхностей;		
	- метод обработки, как основа выполнения технологической операции;		
	- классификация движений формообразования при различных методах механической и физико-		
	технической обработки (главные и вспомогательные движения);		
	- основные факторы, влияющие на характер технологического процесса механической и физико-		
	технической обработки;		

No Тематика лекционных занятий / краткое содержание Π/Π - общие понятие о режимах резания (глубина резания и припуск на обработку, рабочая подача; скорость резания); - основы процесса стружкообразования и виды стружек при механической и физико-технической обработке; - общие понятия о точности, качестве и производительности механической и физико-технической об-работки. Тема 3. Обработка деталей подвижного состава точением. Рассматриваемые вопросы: - характеристика метода обработки точением (определение метода, область применения); - основные движения при токарной обработке (схема формообразования поверхностей и кинематика процесса резания); типы станков токарной группы; - основные узлы и механизмы токарного и токарно-винторезного станков и их назначение; - специализированные токарные станки для железнодорожного транспорта (осетокарные, колесотокарные и др.); - токарные резцы (виды, назначение, основные конструктивные элементы и рабочие поверхности, геометрические параметры рабочей части); - элементы режима резания и геометрические параметры сечения срезаемого слоя при токарной обра-ботке; - точность и качество поверхностей деталей подвижного состава при токарной обработке. Тема 4. Обработка отверстий в деталях подвижного состава. Рассматриваемые вопросы: - характеристика методов обработки отверстий (определение методов, область применения); основные движения при обработке осевым инструментом (схема формообразования поверхностей и кинематика процесса резания); - типы станков сверлильной ? расточной групп; - основные узлы и механизмы вертикально-сверлильного и радиально-сверлильного станков и их назначение; - специализированные сверлильные станки для железнодорожного транспорта (рельсосверлильные, осесверлильные и др.); - осевой режущий инструмент для обработки отверстий - сверла, зенкеры, развертки, зенковки, цековки и др. (виды, назначение, основные конструктивные элементы и рабочие поверхности, геометрические параметры рабочей части); - элементы режима резания и геометрические параметры сечения срезаемого слоя при обработке отверстий; - точность и качество поверхностей деталей подвижного состава при обработке отверстий. Тема 5. Фрезерная обработка деталей подвижного состава. Рассматриваемые вопросы: - характеристика методов фрезерной обработки (определение методов, область применения); основные движения при обработке фрезерованием (схема формообразования поверхностей и кинематика процесса резания); - особенности фрезерования как процесса непрерывного резания (встречное и попутное фрезерование, цилиндрическое и торцовое фрезерование); - типы станков фрезерной группы;

- основные узлы и механизмы вертикально-фрезерного, горизонтально-фрезерного и широкоунивер-сально-фрезерного станков и их назначение
- специализированные фрезерные станки для железнодорожного транспорта (рельсофрезерные, коле-софрезерные, фрезерование боковой рамы, фрезерования автосцепки и др.);
- фрезерный режущий инструмент (виды, назначение, основные конструктивные элементы и

№ π/π

Тематика лекционных занятий / краткое содержание

рабочие поверхности, геометрические параметры рабочей части);

- элементы режима резания и геометрические параметры сечения срезаемого слоя при обработке фре-зерованием;
- точность и качество поверхностей деталей подвижного состава при фрезерной обработке.

Тема 6. Процессы шлифования и отделочной обработки деталей подвижного состава. Рассматриваемые вопросы:

- характеристика методов шлифовальной и отделочной обработки (определение методов, область применения);
- основные движения при обработке абразивным инструментом (схема формообразования поверхно-стей и кинематика процесса резания);
- типы станков для шлифовальной и отделочной обработки;
- основные узлы и механизмы круглошлифовального, плоскошлифовального, хонинговального и заточного станков и их назначение;
- специализированные шлифовальные станки для железнодорожного транспорта (рельсошлифовальные, колесошлифовальные, для обработки коленчатых валов, для хонингования гильз цилиндров и др.);
- абразивный режущий инструмент круги, бруски, головки, ленты, хоны, пасты и др. (виды, назначение, основные конструктивные элементы и рабочие поверхности, геометрические параметры рабочей час-ти);
- элементы режима резания и геометрические параметры сечения срезаемого слоя при абразивной об-работке;
- точность и качество поверхностей деталей подвижного состава при шлифовании и отделочной обра-ботке.

Тема 7. Процессы строгания и долбления деталей подвижного состава.

Рассматриваемые вопросы:

- характеристика методов строгания и долбления (определение методов, область применения);
- основные движения при строгании и долблении (схема формообразования поверхностей и кинематика процесса резания);
- типы строгальных и долбежных станков;
- основные узлы и механизмы поперечно-строгального и вертикально-долбежного станков и их назна-чение;
- специализированные строгальные и долбежные станки для железнодорожного транспорта (рельсострогальные, для обработки стрелочных переводов, для долбления шпоночных пазов и шлицов и др.);
- строгальные и долбежные резцы (виды, назначение, основные конструктивные элементы и рабочие поверхности, геометрические параметры рабочей части);
- элементы режима резания и геометрические параметры сечения срезаемого слоя при обработке стро-ганием и долблением;
- точность и качество поверхностей деталей подвижного состава при обработке строганием и долбле-нием.

Тема 8. Процессы протягивания и прошивания деталей подвижного состава.

Рассматриваемые вопросы:

- характеристика методов протягивания и прошивания (определение методов, область применения);
- основные движения при протягивании и прошивании (схема формообразования поверхностей и ки-нематика процесса резания);
- принципиальные схемы процесса протягивания (профильная, генераторная и прогрессивная);
- типы протяжных и прошивных станков;
- основные узлы и механизмы горизонтально-протяжного станка и их назначение;
- специализированные протяжные и прошивные станки для железнодорожного транспорта (для

№ п/п

Тематика лекционных занятий / краткое содержание

протя-гивания шпоночных пазов и шлицов, для прошивания при ремонте деталей подвижного состава и др.);

- протяжки и прошивки (виды, назначение, основные конструктивные элементы и рабочие поверхности, геометрические параметры рабочей части);
- элементы режима резания и геометрические параметры сечения срезаемого слоя при обработке про-тягиванием и прошиванием;
- точность и качество поверхностей деталей подвижного состава при обработке протягиванием и про-шиванием.

Тема 9. Обработка зубчатых колес.

Рассматриваемые вопросы:

- характеристика методов нарезания и отделки зубьев зубчатых колес (определение методов, область применения);
- основные движения при нарезании и отделке зубчатых колес (схема формообразования поверхностей и кинематика процесса резания);
- принципы нарезания зубчатых колес на универсально-фрезерных станках;
- типы станков для нарезания зубчатых колес (зубофрезерные, зубодолбежные, зубострогальные, зу-бопротяжные, зубошлифовальные, универсально-фрезерные и др.);
- основные узлы и механизмы зубофрезерного, зубострогального, зубодолбежного и зубошлифоваль-ного станков и их назначение;
- типы станков для отделки зубьев зубчатых колес (зубошлифовальные, зубохонинговальные, шевин-говальные, обкатные, притирочные и др.);
- режущий инструмент для нарезания и отделки зубьев червячные и модульные фрезы, зубострогальные резцы, абразивные круги, шеверы (виды, назначение, основные конструктивные элементы и рабочие поверхности, геометрические параметры рабочей части);
- элементы режима резания и геометрические параметры сечения срезаемого слоя при обработке зубь-ев зубчатых колес;
- точность и качество обработки зубчатых колес подвижного состава.

Тема 10. Резьбонарезание.

Рассматриваемые вопросы:

- характеристика методов нарезания и отделки резьб (определение методов, область применения);
- основные движения при нарезании и отделке резьбы (схема формообразования поверхностей и кинематика процесса резания);
- типы станков для нарезания резьбы (токарные, токарно-винторезные, фрезерные, сверлильные, рас-точные, резьбошлифовальные, резьбонакатывающие и др.);
- основные узлы и механизмы резьбонарезного и резьбошлифовального станков и их назначение;
- режущий инструмент для нарезания и отделки резьбы метчики и плашки, резьбовые резцы, резьбо-нарезные головки, резьбофрезы, резьбошлифовальные круги, резьбонакатные головки и др. (виды, назначение, основные конструктивные элементы и рабочие поверхности, геометрические параметры рабочей части);
- элементы режима резания и геометрические параметры сечения срезаемого слоя при обработке резь-бы;
- точность и качество обработки резьбы на деталях подвижного состава.

Тема 11. Отрезание и разрезка.

Рассматриваемые вопросы:

- характеристика методов отрезания и разрезки (определение методов, область применения);
- основные движения при отрезании и разрезке (схема формообразования поверхностей и кинематика процесса резания);
- типы станков для отрезания и разрезки (токарные и токарно-отрезные, фрезерные и фрезерноотрезные, абразивно-отрезные, ленточнопильные, ножовочные и др.);

No Тематика лекционных занятий / краткое содержание Π/Π основные узлы и механизмы ленточнопильного, ножовочного и абразивно-отрезного станков и их на-значение; - специализированные отрезные и разрезные станки для железнодорожного транспорта (рельсорезные, для отрезки концов осей и др.); - режущий инструмент для отрезания и разрезки – отрезные резцы, дисковые пилы, отрезные фрезы, ножовочные полотна, абразивные диски и др. (виды, назначение, основные конструктивные элементы и рабочие поверхности, геометрические параметры рабочей части); - элементы режима резания и геометрические параметры сечения срезаемого слоя при отрезании и разрезке; - точность и качество поверхностей деталей подвижного состава при обработке отрезанием и разрезкой. Тема 12. Обработка поверхностным пластическим деформированием (ППД). Рассматриваемые вопросы: формирование наклепа поверхностного слоя деталей; классификация методов ППД; формообразующие методы ППД; - упрочняющие методы ППД; - методы ППД для улучшения шероховатости поверхности деталей; комбинированные методы ППД; - использование ППД при изготовлении и ремонте деталей подвижного состава. Тема 13. Основные сведения о станочных приспособлениях и оснастке. Рассматриваемые вопросы: - основные требования, предъявляемые к станочным приспособлениям в эксплуатации; - приспособления для токарных станков; - приспособления для сверлильных станков; - приспособления для фрезерных станков; - приспособления для шлифовальных станков; - приспособления для строгальных и долбежных станков; - приспособления для протяжных и прошивных станков; - приспособления для зуборезных станков; - приспособления для резьбонарезных станков; - приспособления для отрезных станков. Тема 14. Основные сведения о металлорежущем инструменте. Рассматриваемые вопросы: - основные требования, предъявляемые к металлорежущему инструменту в эксплуатации; общие сведения об инструментальных материалах (виды, характеристики, область применения); - общие сведения об износе, стойкости и критериях затупления режущего инструмента; - общие сведения о видах и внешнем характере износа инструмента. Тема 15. Основные сведения о контрольно-измерительном инструменте. Рассматриваемые вопросы:

- технический контроль при механической и физико-технической обработке;
- основные требования, предъявляемые к контрольно-измерительному инструменту в эксплуатации;
- контрольно-измерительный инструмент для токарных работ;
- контрольно-измерительный инструмент используемый при обработке отверстий;
- контрольно-измерительный инструмент для фрезерных работ;
- контрольно-измерительный инструмент для строгальных и долбежных работ;
- контрольно-измерительный инструмент для протяжных и прошивныхработ;
- контрольно-измерительный инструмент для зуборезных работ;

№ п/п	Тематика лекционных занятий / краткое содержание
	- контрольно-измерительный инструмент для резьбонарезных работ; - контрольно-измерительный инструмент для отрезных работ.

4.2. Занятия семинарского типа.

Лабораторные работы

№	Наименование лабораторных работ / краткое содержание		
п/п			
1			
	Лабораторная работа 1. Изучение устройства, приципов работы и основных технических		
	характеристик токарно-винторезного станка.		
	Рассматриваемые вопросы:		
	- классификация станков данной группы;		
	- основные виды работ выполняемых на данных станках;		
	- основные узлы станков данной группы и их назначение;		
	- основные приспособления используемые на данных станках;		
	- основные режущие инструменты применяемые на данных станках;		
	- основные контрольно-измерительные инструменты применяемые на данных станках;		
	- изучение базовых приемов управления рассматриваемого станка;		
	- определение основных технических и технологических параметров рассматриваемого станка.		
	Лабораторная работа 2. Изучение устройства, приципов работы и основных технических		
	характеристик токарного станка с ЧПУ.		
	Рассматриваемые вопросы:		
	- классификация станков данной группы;		
	- основные виды работ выполняемых на данных станках;		
	- основные узлы станков данной группы и их назначение;		
	- основные приспособления используемые на данных станках;		
	- основные режущие инструменты применяемые на данных станках;		
	- основные контрольно-измерительные инструменты применяемые на данных станках;		
	- изучение базовых приемов управления рассматриваемого станка;		
	- определение основных технических и технологических параметров рассматриваемого станка.		
	Лабораторная работа 3. Изучение устройства, приципов работы и основных технических		
	характеристик вертикально-сверлильного станка.		
	Рассматриваемые вопросы:		
	- классификация станков данной группы;		
	- основные виды работ выполняемых на данных станках;		
	- основные узлы станков данной группы и их назначение;		
	- основные приспособления используемые на данных станках;		
	- основные режущие инструменты применяемые на данных станках;		
	- основные контрольно-измерительные инструменты применяемые на данных станках;		
	- изучение базовых приемов управления рассматриваемого станка;		
	- определение основных технических и технологических параметров рассматриваемого станка.		
	Лабораторная работа 4. Изучение устройства, приципов работы и основных технических		
	характеристик радиально-сверлильного станка.		
	Рассматриваемые вопросы:		
	- классификация станков данной группы;		
	- основные виды работ выполняемых на данных станках;		
	- основные узлы станков данной группы и их назначение;		

No Наименование лабораторных работ / краткое содержание Π/Π основные приспособления используемые на данных станках; - основные режущие инструменты применяемые на данных станках; основные контрольно-измерительные инструменты применяемые на данных станках; - изучение базовых приемов управления рассматриваемого станка; - определение основных технических и технологических параметров рассматриваемого станка. Лабораторная работа 5. Изучение устройства, приципов работы и основных технических характеристик горизонтально-фрезерного станка. Рассматриваемые вопросы: - классификация станков данной группы; - основные виды работ выполняемых на данных станках; - основные узлы станков данной группы и их назначение; - основные приспособления используемые на данных станках; - основные режущие инструменты применяемые на данных станках; основные контрольно-измерительные инструменты применяемые на данных станках; изучение базовых приемов управления рассматриваемого станка; - определение основных технических и технологических параметров рассматриваемого станка. Лабораторная работа 6. Изучение устройства, приципов работы и основных технических характеристик широкоуниверсального фрезерного станка. Рассматриваемые вопросы: - классификация станков данной группы; - основные виды работ выполняемых на данных станках; - основные узлы станков данной группы и их назначение; - основные приспособления используемые на данных станках; основные режущие инструменты применяемые на данных станках; - основные контрольно-измерительные инструменты применяемые на данных станках; - изучение базовых приемов управления рассматриваемого станка; - определение основных технических и технологических параметров рассматриваемого станка. Лабораторная работа 7. Изучение устройства, приципов работы и основных технических характеристик фрезерного станка с ЧПУ. Рассматриваемые вопросы: - классификация станков данной группы; - основные виды работ выполняемых на данных станках; - основные узлы станков данной группы и их назначение; основные приспособления используемые на данных станках; - основные режущие инструменты применяемые на данных станках; - основные контрольно-измерительные инструменты применяемые на данных станках; - изучение базовых приемов управления рассматриваемого станка; - определение основных технических и технологических параметров рассматриваемого станка. Лабораторная работа 8. Изучение устройства, приципов работы и основных технических характеристик плоскошлифовального станка. Рассматриваемые вопросы: - классификация станков данной группы;

- основные виды работ выполняемых на данных станках;
- основные узлы станков данной группы и их назначение;
- основные приспособления используемые на данных станках;
- основные режущие инструменты применяемые на данных станках;
- основные контрольно-измерительные инструменты применяемые на данных станках;
- изучение базовых приемов управления рассматриваемого станка;

№ п/п

Наименование лабораторных работ / краткое содержание

- определение основных технических и технологических параметров рассматриваемого станка.

Лабораторная работа 9. Изучение устройства, приципов работы и основных технических характеристик заточного станка.

Рассматриваемые вопросы:

- классификация станков данной группы;
- основные виды работ выполняемых на данных станках;
- основные узлы станков данной группы и их назначение;
- основные приспособления используемые на данных станках;
- основные режущие инструменты применяемые на данных станках;
- основные контрольно-измерительные инструменты применяемые на данных станках;
- изучение базовых приемов управления рассматриваемого станка;
- определение основных технических и технологических параметров рассматриваемого станка.

Лабораторная работа 10. Изучение устройства, приципов работы и основных технических характеристик зубофрезерного станка.

Рассматриваемые вопросы:

- классификация станков данной группы;
- основные виды работ выполняемых на данных станках;
- основные узлы станков данной группы и их назначение;
- основные приспособления используемые на данных станках;
- основные режущие инструменты применяемые на данных станках;
- основные контрольно-измерительные инструменты применяемые на данных станках;
- изучение базовых приемов управления рассматриваемого станка;
- определение основных технических и технологических параметров рассматриваемого станка.

Лабораторная работа 11. Изучение устройства, приципов работы и основных технических характеристик ленточнопильного станка.

Рассматриваемые вопросы:

- классификация станков данной группы;
- основные виды работ выполняемых на данных станках;
- основные узлы станков данной группы и их назначение;
- основные приспособления используемые на данных станках;
- основные режущие инструменты применяемые на данных станках;
- основные контрольно-измерительные инструменты применяемые на данных станках;
- изучение базовых приемов управления рассматриваемого станка;
- определение основных технических и технологических параметров рассматриваемого станка.

Лабораторная работа 12. Изучение устройства, приципов работы и основных технических характеристик ножовочного и абразивно-отрезного станков.

Рассматриваемые вопросы:

- классификация станков данной группы;
- основные виды работ выполняемых на данных станках;
- основные узлы станков данной группы и их назначение;
- основные приспособления используемые на данных станках;
- основные режущие инструменты применяемые на данных станках;
- основные контрольно-измерительные инструменты применяемые на данных станках;
- изучение базовых приемов управления рассматриваемого станка;
- определение основных технических и технологических параметров рассматриваемого станка.

Лабораторная работа 13. Изучение конструкции и геометрических параметров режущей части проход-ных токарных резцов.

Ŋo Наименование лабораторных работ / краткое содержание Π/Π Рассматриваемые вопросы: - определение назначения рассматриваемого режущего инструмента; - изучение конструкции режущего инструмента; - определени инструментального материала рассматриваемого режущего инструмента; - измерение основных геометрических размеров рассматриваемого режущего инструмента; - измерение геометрических параметров режущей части рассматриваемого режущего инструмента. Лабораторная работа 14. Изучение конструкции и геометрических параметров режущей части основных типов токарных резцов. Рассматриваемые вопросы: - определение назначения рассматриваемого режущего инструмента; - изучение конструкции режущего инструмента; - определени инструментального материала рассматриваемого режущего инструмента; - измерение основных геометрических размеров рассматриваемого режущего инструмента; - измерение геометрических параметров режущей части рассматриваемого режущего инструмента. Лабораторная работа 15. Изучение конструкции и геометрических параметров режущей части основных типов инструментов для обработки отверстий. Рассматриваемые вопросы: - определение назначения рассматриваемого режущего инструмента; - изучение конструкции режущего инструмента; - определени инструментального материала рассматриваемого режущего инструмента; - измерение основных геометрических размеров рассматриваемого режущего инструмента; - измерение геометрических параметров режущей части рассматриваемого режущего инструмента Лабораторная работа 16. Изучение конструкции и геометрических параметров режущей части основных типов фрез. Рассматриваемые вопросы: - определение назначения рассматриваемого режущего инструмента; - изучение конструкции режущего инструмента; определени инструментального материала рассматриваемого режущего инструмента; - измерение основных геометрических размеров рассматриваемого режущего инструмента; - измерение геометрических параметров режущей части рассматриваемого режущего инструмента Лабораторная работа 17. Изучение конструкции и геометрических параметров режущей части протя-жек. Рассматриваемые вопросы: - определение назначения рассматриваемого режущего инструмента; - изучение конструкции режущего инструмента; - определени инструментального материала рассматриваемого режущего инструмента; - измерение основных геометрических размеров рассматриваемого режущего инструмента; - измерение геометрических параметров режущей части рассматриваемого режущего инструмента. Лабораторная работа 18. Изучение конструкции и методов настройки типовых станочных приспособ-лений. Рассматриваемые вопросы: - виды станочных приспособлений; - настойка делительной головки на различные типы деления; настойка делительного стола; - установка и выверка машинных тисков; измерение биения осевого инструмента при различных методах закрепления.

№	
л⊻ п/п	Тематика практических занятий/краткое содержание
1	Практическое занятие 1. Обработка деталей типа вал.
	Рассматриваемые вопросы:
	- разновидности деталей типа вал;
	- методика определения методов обработки поверхностей;
	- выбор схемы обработки;
	- выбор станочного оборудования;
	- выбор режущего инструмента;
	- выбор станочных приспособлений;
	- выбор контрольно-измерительного инструмента.
	Практическое занятие 2. Обработка деталей типа диск.
	Рассматриваемые вопросы:
	- разновидности деталей типа диск;
	- методика определения методов обработки поверхностей;
	- выбор схемы обработки;
	- выбор станочного оборудования;
	- выбор режущего инструмента;
	- выбор станочных приспособлений;
	- выбор контрольно-измерительного инструмента.
	Практическое занятие 3. Обработка деталей типа корпус.
	Рассматриваемые вопросы:
	- разновидности деталей типа корпус;
	- методика определения методов обработки поверхностей;
	- выбор схемы обработки;
	- выбор станочного оборудования;
	- выбор режущего инструмента;
	- выбор станочных приспособлений;
	- выбор контрольно-измерительного инструмента.
	Практическое занятие 4. Обработка профиля поверхности катания колесных пар подвижного
	состава.
	Рассматриваемые вопросы:
	- разновидности колесных пар;
	- методика определения методов обработки поверхностей;
	- выбор схемы обработки;
	- выбор станочного оборудования;
	- выбор режущего инструмента;
	- выбор станочных приспособлений;
	- выбор контрольно-измерительного инструмента.
	Практическое занятие 5. Обработка осей колесных пар подвижного состава.
	Рассматриваемые вопросы:
	- разновидности осей колесных пар;
	- методика определения методов обработки поверхностей;
	- выбор схемы обработки;
	- выбор станочного оборудования;
	- выбор режущего инструмента;
	- выбор станочных приспособлений;
	- выбор контрольно-измерительного инструмента.

№ /	Тематика практических занятий/краткое содержание
п/п	П
	Практическое занятие 6. Обработка бандажей колесных пар подвижного состава. Рассматриваемые вопросы:
	- разновидности бандажей;
	- методика определения методов обработки поверхностей;
	- выбор схемы обработки;
	- выбор станочного оборудования;
	- выбор режущего инструмента;
	- выбор режущего инструмента, - выбор станочных приспособлений;
	- выбор станочных приспосоолении, - выбор контрольно-измерительного инструмента.
	выоор контрольно измерительного инструмента.
	Практическое занятие 7. Обработка деталей буксового узла подвижного состава.
	Рассматриваемые вопросы:
	- разновидности деталей буксового узла;
	- методика определения методов обработки поверхностей;
	- выбор схемы обработки;
	- выбор станочного оборудования;
	- выбор режущего инструмента;
	- выбор станочных приспособлений;
	- выбор контрольно-измерительного инструмента.
	Практическое занятие 8. Обработка деталей автосцепки подвижного состава.
	Рассматриваемые вопросы:
	- разновидности деталей автосцепки;
	- методика определения методов обработки поверхностей;
	- выбор схемы обработки;
	- выбор станочного оборудования;
	- выбор режущего инструмента;
	- выбор станочных приспособлений;
	- выбор контрольно-измерительного инструмента.
	Практическое занятие 9. Обработка надрессорной балки тележки подвижного состава.
	Рассматриваемые вопросы:
	- разновидности надрессорных балок;
	- методика определения методов обработки поверхностей;
	- выбор схемы обработки;
	- выбор станочного оборудования;
	- выбор режущего инструмента;
	- выбор станочных приспособлений;
	- выбор контрольно-измерительного инструмента.
	Политического 10 Облабати 5
	Практическое занятие 10. Обработка боковой рамы тележки подвижного состава.
	Рассматриваемые вопросы:
	- разновидности боковых рам;
	- методика определения методов обработки поверхностей;
	- выбор схемы обработки;
	- выбор станочного оборудования;
	- выбор режущего инструмента;
	- выбор станочных приспособлений;
	- выбор контрольно-измерительного инструмента.
	Практическое занятие 11. Обработка деталей тормозной системы подвижного состава.
	Рассматриваемые вопросы:

2	T
П	Тематика практических занятий/краткое содержание
	- разновидности деталей тормозной системы;
	- методика определения методов обработки поверхностей;
	- выбор схемы обработки;
	- выбор станочного оборудования;
	- выбор режущего инструмента;
	- выбор станочных приспособлений;
	- выбор контрольно-измерительного инструмента.
	Пломения одно однати 12. Облоботно министра на примене до селото
	Практическое занятие 12. Обработка гильзы цилидра подвижного состава.
	Рассматриваемые вопросы:
	- разновидности гильз цилиндров;
	- методика определения методов обработки поверхностей;
	- выбор схемы обработки;
	- выбор станочного оборудования;
	- выбор режущего инструмента;
	- выбор станочных приспособлений;
	- выбор контрольно-измерительного инструмента.
	Практическое занятие 13. Обработка поршня подвижного состава.
	Рассматриваемые вопросы:
	- разновидности поршней;
	- методика определения методов обработки поверхностей;
	- выбор схемы обработки;
	- выбор станочного оборудования;
	- выбор режущего инструмента;
	- выбор станочных приспособлений;
	- выбор контрольно-измерительного инструмента.
	Практическое занятие 14. Обработка блока цилиндров подвижного состава.
	Рассматриваемые вопросы:
	- разновидности блоков цилидров;
	- методика определения методов обработки поверхностей;
	- методика определения методов обработки поверхностей; - выбор схемы обработки;
	- выбор станочного оборудования;
	- выбор режущего инструмента;
	- выбор режущего инструмента; - выбор станочных приспособлений;
	- выбор контрольно-измерительного инструмента.
	Практическое занятие 15. Обработка головки блока цилиндров подвижного состава.
	Рассматриваемые вопросы:
	- разновидности головок блока;
	- методика определения методов обработки поверхностей;
	- выбор схемы обработки;
	- выбор станочного оборудования;
	- выбор режущего инструмента;
	- выбор станочных приспособлений;
	- выбор контрольно-измерительного инструмента.
	Практическое занятие 16. Обработка редуктора подвижного состава.
	Рассматриваемые вопросы:
	- разновидности редукторов;
	L basing producting bard into both

No	T	
Π/Π	Тематика практических занятий/краткое содержание	
	- выбор схемы обработки;	
	- выбор станочного оборудования;	
	- выбор режущего инструмента;	
	- выбор станочных приспособлений;	
	- выбор контрольно-измерительного инструмента.	
	Практическое занятие 17. Обработка зубчатого колеса подвижного состава.	
	Рассматриваемые вопросы:	
	- разновидности зубчатых колес;	
	- методика определения методов обработки поверхностей;	
	- выбор схемы обработки;	
	- выбор станочного оборудования;	
	- выбор режущего инструмента;	
	- выбор станочных приспособлений;	
	- выбор контрольно-измерительного инструмента.	
	Практическое занятие 18. Обработка деталей карданного вала подвижного состава.	
	Рассматриваемые вопросы:	
	- разновидности деталей карданных валов;	
	- методика определения методов обработки поверхностей;	
	- выбор схемы обработки;	
	- выбор станочного оборудования;	
	- выбор режущего инструмента;	
	- выбор станочных приспособлений;	
	- выбор контрольно-измерительного инструмента.	

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Самостоятельная подготовка к практическим (и/или лабораторным) занятиям.
	Работа с учебной литературой 1-6.
2	Выполнение курсовой работы.
3	Подготовка к контрольной работе.
4	Подготовка к промежуточной аттестации.

4.4. Примерный перечень тем видов работ

1. Примерный перечень тем контрольных работ

Обзор методов изменения формы, размеров, шероховатости и физикомеханических свойств заготовок, использующих физико-химических явлениях Классификация методов обработки по характеру воздействия и их видам: электрохимические и электроэрозионные; силовые воздействия импульсных магнитных полей и электрогидравлические явления; тепловое воздействие, возникающее под действием потока электронов, сфокусированного излучения, потока плазмы; акустические явления и др.

Основные технологические схемы обработки. Области рационального применения, достоинства и недостатки перечисленных методов технической физики.

Электронно-лучевая обработка (ЭЛО). Лазерная обработка (ПО).

Электронно-лучевая обработка (ЭЛО). Физическая сущность ЭЛО. Типовые схемы обработки и основные технологические характеристики. Установки ЭЛО.

Лазерная обработка (ЛО). Физическая сущность ЛО. Типовые схемы обработки и основные технологические характеристики. Виды оптических квантовых генераторов. Установки ЛО. Выбор и управление режимами обработки. Типовые операции ЛО: резка, сварка, пайка.

Плазменная обработка (ПО).

Физическая сущность ПО. Плазмотроны. Плазмообразующие газы. Оборудование ДЛЯ ПΟ. Типовые схемы обработки основные технологические характеристики. Выбор и управление режимами обработки. Процессы ПО: плавление и рафинирование металлов, резка, строгание, свойств полирование, изменение поверхности заготовки, нанесение покрытий, наплавка

Магнитно-абразивная обработка (МАО).

Магнитно-абразивная обработка (МАО).

Физическая сущность МАО. Типовые схемы обработки и основные технологические характеристики. Магнито-абразивные порошки. Магнитные индукторы. Оборудование для МАО. Выбор и управление режимами обработки. Процессы МАО: шлифование, полирование, хонингование, очистка, удаление заусенцев и окалины Магнитно-импульсная обработка (МИО).

Физическая сущность МИО. Оборудование для МИО. Типовые схемы обработки и основные технологические характеристики. Выбор и управление режимами обработки. Процессы МИО: обжим, раздача, штамповка.

Физические основы и классификация разновидностей ультразвуковой обработки (УЗО). Концентраторы и источники питания. Технологическое оборудование и режимы обработки. Технологические особенности разновидностей процессов: абразивной обработки свободными зернами и абразивным инструментом; резания, давления, сварки, очистки.

Сочетание различных методов электрофизической и электрохимической обработки друг с другом и с механической обработкой резанием и давлением

2. Примерный перечень тем курсовых работ
Разработка операции электрохимической обработки «фланец»
Разработка операции ультразвуковой обработки «фланец»
Разработка операции электронно-лучевой обработки «фланец»
Разработка операции лазерной размерной обработки «фланец»
Разработка операции электрохимической обработки «вал»
Разработка операции ультразвуковой обработки «вал»
Разработка операции электронно-лучевой обработки «вал»
Разработка операции лазерной размерной обработки «крышка»
Разработка операции ультразвуковой обработки «крышка»
Разработка операции ультразвуковой обработки «крышка»
Разработка операции электронно-лучевой обработки «крышка»
Разработка операции электронно-лучевой обработки «крышка»

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№	Библиографическое описание	Место доступа
Π/Π	внознографи теское опнешне	тисето доступа
1	Технология конструкционных материалов В.П.	https://e.lanbook.com/book/216530
	Ларин Учебное пособие — Санкт-Петербург:	(дата обращения: 20.04.2023).
	ГУАП, — 113с. — ISBN 978-5-8088-1573-5., 2021	Текст электронный.
2	Основы резания материалов и режущий	https://e.lanbook.com/book/207107
	инструмен Ю.М. Зубарев, Р.Н. Битюков Учебник	(дата обращения: 20.04.2023).
	Санкт-Петербург: Лань, — 228с. — ISBN 978-5-	Текст электронный.
	8114-4012-2., 2022	
3	Обработка металлов резанием К.К. Карандашов,	https://e.lanbook.com/book/106742
	В.Д. Клопотов Учебное пособие Томск: ТПУ, —	(дата обращения: 20.04.2023).
	268c. — ISBN 978-5-4387-0777-6., 2017	Текст электронный.
4	Технология конструкционных материалов С.Б.	https://e.lanbook.com/book/297617
	Малышко, С.А. Горчакова Учебное пособие 2-е	(дата обращения: 20.04.2023).
	изд., испр. и доп. — Владивосток: МГУ им. адм.	Текст электронный.
	Г.И. Невельского,— 78с. — ISBN 978-5-8343-	
	1197-8., 2022	

5	Резание материалов Д.В. Кожевников, С.В.	https://e.lanbook.com/book/192995
	Кирсанов Учебник под общей редакцией С.В.	(дата обращения: 20.04.2023).
	Кирсанова. — 3-е изд., стереотип. — Москва:	Текст электронный.
	Машиностроение, — 304с. — ISBN 978-5-907523-	
	03-6., 2022	
6	Резание металлов и режущий инструмент Э.М.	https://e.lanbook.com/book/193776
	Дечко, М.М. Дечко. Учебное пособие Минск:	(дата обращения: 20.04.2023).
	Вышэйшая школа, — 287с. — ISBN 978-985-06-	Текст электронный.
	3268-5., 2020	

- 6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).
- 1. http://library.miit.ru/ электронно-библиотечная система Научно-технической библиотеки МИИТ.
- 2. http://www.library.ru/ информационно-справочный портал Проект Российской государственной библиотеки.
- 3. http://tehmasmiit.wmsite.ru/ информационно-справочный портал кафедры ТТМиРПС
- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Компьютеры на рабочих местах в компьютерном классе должны быть обеспечены стандартными программными продуктами Microsoft.

- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).
- 1. Учебная аудитория для проведения занятий лекционного/практического типа, групповых и индивидуальных консультаций
- 2 Компьютерный класс (учебная аудитория) для проведения групповых занятий (лекционных, практических и/или лабораторных)
- 3. Учебная лаборатория для проведения групповых занятий (лабораторных и/или практических)

Примерный перечень материально-технической базы: металлорежущие станки, станочные приспособления, режущий и измерительный инструмент, контрольно-измерительные приборы, учебные плакаты.

9. Форма промежуточной аттестации:

Курсовая работа в 8 семестре. Экзамен в 8 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, к.н. кафедры «Технология транспортного машиностроения и ремонта подвижного состава»

А.Ю. Попов

Согласовано:

Заведующий кафедрой ТТМиРПС

М.Ю. Куликов

Председатель учебно-методической

комиссии С.В. Володин