министерство транспорта российской федерации федеральное государственное автономное образовательное учреждение высшего образования «РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА»

Кафедра «Судовые энергетические установки» Академии водного

транспорта

АННОТАЦИЯ К РАБОЧЕЙ ПРОГРАММЕ ДИСЦИПЛИНЫ

«Элементы и функциональные устройства судовой автоматики»

Специальность: 26.05.07 — Эксплуатация судового

электрооборудования и средств автоматики

Специализация: Эксплуатация судового электрооборудования и

средств автоматики

Квалификация выпускника: Инженер-электромеханик

Форма обучения: заочная

Год начала подготовки 2020

1. Цели освоения учебной дисциплины

Целью освоения данной дисциплины является формирование профессиональных компетенций, в области эксплуатации судового электрооборудования и средств автоматики

2. Место учебной дисциплины в структуре ОП ВО

Учебная дисциплина "Элементы и функциональные устройства судовой автоматики" относится к блоку 1 "Дисциплины (модули)" и входит в его базовую часть.

3. Планируемые результаты обучения по дисциплине (модулю), соотнесенные с планируемыми результатами освоения образовательной программы

Процесс изучения дисциплины направлен на формирование следующих компетенций:

ОПК-2	Способен применять естественнонаучные и общеинженерные знания,
	аналитические методы в профессиональной деятельности
ПК-3	Способен осуществлять безопасное техническое использование,
	техническое обслуживание, диагностирование и ремонт систем
	автоматики и управления главной двигательной установкой и
	вспомогательными механизмами в соответствии с международными и
	национальными требованиями
ПК-7	Способен осуществлять безопасное техническое использование,
	техническое обслуживание, диагностирование и ремонт
	электрооборудования и средств автоматики судовых палубных
	механизмов и грузоподъемных устройств в соответствии с
	международными и национальными требованиями
ПК-11	Способен осуществлять наблюдение за работой автоматических систем
	управления двигательной установкой и вспомогательными механизмами

4. Общая трудоемкость дисциплины составляет

3 зачетных единиц (108 ак. ч.).

5. Образовательные технологии

Лекции проводятся в традиционной классно-урочной организационной форме, по типу управления познавательной деятельностью. Практические занятия организованы с использованием технологий развивающего обучения, для контроля знаний проводятся опросы, решение тестовых заданий.

6. Содержание дисциплины (модуля), структурированное по темам (разделам)

РАЗДЕЛ 1

Введение

Состав и структура дисциплины. Рекомендуемая литература. Основные этапы и перспективы развития систем автоматики

РАЗДЕЛ 2

Основные сведения об элементах систем автоматики и особенностях их применения и эксплуатации в судовых условиях

Классификация устройств судовой автоматики. Особенности применения и эксплуатации элементов автоматики в судовых условиях. Требования, предъявляемые к устройства судовой автоматики Правилами Российского Речного Регистра. Защита функциональных систем автоматики от воздействия окружающей среды.

РАЗДЕЛ 3

Контактные устройства судовой автоматики

Принцип действия и устройство контактных элементов сувой автоматики. Основные конструктивные части и узлы контактных устройств автоматики.

Контроллеры их применение в якорно-швартовых механизмах. Электромагнитные реле и контакторы переменного и постоянного тока .Магнитные пускатели.

Применение контактных элементов в схемах пуска и торможения приводов. Элементы защиты-тепловой, максимальной, нулевой с применением контактных устройств.

РАЗДЕЛ 4

Логические схемы И.ИЛИ, Не и их применение в судовой автоматике. Цифровые элементы автоматики.

Логические схемы И,ИЛИ,НЕ их реализация на релейно-контактных устройствах. Реализация схем И,ИЛИ,НЕ на бесконтактных устройствах.

Бесконтактные схемы управления с применением логических элементов автоматики. Схемы плавного пуска электродвигателя с применением бесконтактных логических устройств. Схемы защит электроприводов с применением элементов И.ИЛИ,НЕ. Схема электронного реле и его применение в судовом электроприводе.

Схемы триггеров. Триггерные счетчики, применение в судовом электроприводе. Цифровые регулирующие устройства.

РАЗДЕЛ 5

Тиристорное управление в средствах судовой автоматики Основные понятия тиристорного управления.

Тиристор –силовой вентиль и его применение в судовом электроприводе. Тиристорные пускатели. Схемы импульсно – фазового управления СИФУ. Применение тиристоров в схемах УВ-Д. Современные схемы привода постоянного тока с применением тиристоров. Особенности построения тиристорных схем управления в приводе переменного тока. Применение тиристоров в частотных преобразователях.

РАЗДЕЛ 6

Магнитные усилители как средства судовой автоматики.

Теоретические сведения о магнитных усилителях МУ.

Принцип действия магнитных усилителей. МУ без обратной связи и с обратной связью. Схемы и характеристики. МУ с самонасыщением. Реверсивные МУ.

Применение МУ в судовом электроприводе.

применение міз в судовом электроприводе

РАЗДЕЛ 7

Дифференциальный зачёт