МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент

программы аспирантуры по научной специальности 2.4.5. Энергетические системы и комплексы, утвержденной первым проректором РУТ (МИИТ)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

«Энергетика и электроэнергетика»

Кафедра «Электроэнергетика транспорта» Уровень высшего образования: подготовка кадров высшей квалификации Научная специальность: 2.4.5. Энергетические системы и

комплексы

Форма обучения: Очная

Разработчики

профессор, профессор, д.н. кафедры

«Теплоэнергетика транспорта»

Института транспортной техники и

систем управления А.В. Дмитренко

заведующий кафедрой, доцент, д.н.

кафедры «Электроэнергетика

транспорта» М.В. Шевлюгин

Согласовано

и.о. заведующего кафедрой TT А.В. Дмитренко

Заведующий кафедрой ЭЭТ М.В. Шевлюгин

Председатель учебно-методической

комиссии С.В. Володин

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 3221

Подписал: заведующий кафедрой Шевлюгин Максим

Валерьевич

Дата: 01.06.2022

1. Цели освоения учебной дисциплины.

Целью освоения учебной дисциплины «Энергетика и электроэнергетика» является формирование в процессе подготовки аспирантов по специальности 2.4.2 «Электротехнические комплексы И системы» компетенций. направленных на рациональное и безопасное получение, преобразование, передачу и использование электрической и тепловой энергии, что позволяет эксплуатации энергетических И электроэнергетических установок и систем максимальной экономии природных энергетических интенсификации технологических процессов, ресурсов материалов, выявлению и использованию вторичных энергоресурсов, защите окружающей среды и безопасности людей.

2. Место учебной дисциплины в структуре программы аспирантуры.

Дисциплина "Энергетика и электроэнергетика" относится к Образовательному компоненту «Дисциплины (модули)» программы аспирантуры по специальности 2.4.5. Энергетические системы и комплексы.

3. Планируемые результаты обучения по дисциплине (модулю), соотнесенные с планируемыми результатами освоения программы аспирантуры.

В результате изучения дисциплины "Энергетика и электроэнергетика" аспирант должен:

Знать:

методологию современных исследований в энергетике и электроэнергетике

Знать:

как формируется новая методика в научно-исследовательской деятельности в области профессиональной деятельности

Знать:

современное состояние и тенденции развития науки и техники в фундаментальных и прикладных областях

Знать:

методы анализа тепловых схем и циклов производства теплоты и электроэнергии

Уметь:

применять современные методы исследования в области энергетики и электроэнергетики

Уметь:

определить актуальные задачи и проблемы исследований в фундаметнальных и прикладных областях энергетики и электроэнергетики

Уметь:

адаптировать результаты исследований для решения поставленных задач

Уметь:

применять эти методы при оценке энергоэффективности энергетического и электроэнергетического оборудования

Владеть:

владеть знаниями и умениями для решения проблем в области энергетики и электроэнергетики

Владеть:

способностью анализировать текущее состояние и тенденции развития науки, техники и хозяйства в области энерегетики и электроэнергетики

Владеть:

знаниями и умениями для решения задач в области производства тепла и электроэнергии

Владеть:

средствами решения задач и достиженияч необходимых результатов в процессе профессиональной деятельности

4. Объем дисциплины (модуля).

4.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 7 зачетных единиц (252 академических часа(ов).

4.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации программы аспирантуры на иных условиях, при проведении учебных занятий:

		Количество	
Тип учебных занятий	часов		
	Всего	Сем.	
		№ 2	
Контактная работа при проведении учебных занятий (всего):	72	72	
В том числе:			
Занятия лекционного типа	36	36	
Занятия семинарского типа	36	36	

- 4.3. Объем дисциплины (модуля) в форме самостоятельной работы аспирантов, а также в форме контактной работы аспирантов с педагогическими работниками и (или) лицами, привлекаемыми к реализации программы аспирантуры на иных условиях, при проведении промежуточной аттестации составляет 180 академических часа (ов).
 - 4.4. При обучении по индивидуальному учебному плану, в том числе при

ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.

5. Содержание дисциплины (модуля).

5.1. Занятия лекционного типа.

5.1.1. Лекции.

№ п/п	Тематика лекционных занятий / краткое содержание				
1	Назначение и типы электростанций				
	Графики электрической нагрузки и потребления теплоты. Нагрузочные характеристики станций.				
2	Газотурбинные установки ТЭС				
	Тепловые схемы энерге-тических газотурбинных установок (ГТУ). Термодинамические циклы и				
	характеристики. Осевые компрессоры, камеры сгорания и газовые турбины.				
3	З Технологические схемы и показатели экономичности КЭС Конденсационные электростанции: простейшая схема, станции с промежуточным перегревом пара и регенеративным подогревом ПВ. Показатели тепловой экономичности КЭС				
4	Технологические схемы и показатели экономичности ТЭЦ				
	Схемы теплоэлектроцен-тралей с противодавленческими установками; с конденсационными				
	установками и регулируемым отбором пара. Материальный и тепловой баланс ТЭЦ. Разделение				
	расходов теплоты и топлива на производство отдельных видов энергии. Методы определения				
	показателей тепловой экономичности ТЭЦ.				
5	Потери мощности и энергии в электрических сетях				
6	Электрический расчет разомкнутых распределительных и питающих сетей				
7	Электрический расчет замкнутых сетей				

5.2. Занятия семинарского типа.

5.2.1. Практические занятия.

$N_{\underline{0}}$	T				
Π/Π	Тематика практических занятий/краткое содержание				
1	Общие сведения				
	Назначение и типы электростанций. Графики электрической нагрузки и потребления теплоты.				
	Нагрузочные характеристики станций.				
2	Газотурбинные установки ТЭС				
	Тепловые схемы энерге-тических газотурбинных установок (ГТУ). Термодинамические циклы и				
	характеристики. Осевые компрессоры, камеры сгорания и газовые турбины				
3	Технологические схемы и показатели экономичности КЭС				
	Конденсационные электростанции: простейшая схема, станции с промежуточным перегревом па-ра и				
	регенеративным подогревом ПВ. Показатели тепловой экономичности КЭС				
4	Технологические схемы и показатели экономичности ТЭЦ Схемы теплоэлектроцентралей с противодавленческими установками; с конденсационными				
	установками и регулируемым отбором пара. Материальный и тепловой баланс ТЭЦ. Разделение				
	расходов теплоты и топлива на производство отдельных видов энергии. Методы определения				
	показателей тепловой экономичности ТЭЦ.				
5	Потери мощности и энергии в электрических сетях				

№ п/п	Тематика практических занятий/краткое содержание	
6	Электрический расчет разомкнутых распределительных и питающих сетей	
7	Электрический расчет замкнутых сетей	

5.3. Самостоятельная работа аспирантов.

№ π/π	Вид самостоятельной работы	
1	Газотурбинные установки ТЭС	
2	Технологические схемы и показатели экономичности КЭС	
3	Технологические схемы и показатели экономичности ТЭЦ	
4	Потери мощности и энергии в электрических сетях	
5	Электрический расчет разомкнутых распределительных и питающих сетей	
6	Электрический расчет замкнутых сетей	
1	Подготовка к промежуточной аттестации.	

6. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Тепловые и атомные электрические станции А.С. Матвеев	НТБ (фб.)
	Однотомное издание ТПУ, 2009	
2	Газотурбинные и парогазовые установки тепловых	НТБ РУТ (МИИТ)
	электростанций С.В. Цанев, В.Д. Буров, А.Н. Ремезов	
	Учебное пособие Издательский дом МЭИ, 2009	
3	лектроэнергетические системы и сети Ковалев И.Н.	НТБ РУТ (МИИТ)
	Учебное пособие Учебно-методический центр по	
	образованию на железнодорожном транспорте, 2015	
1	Электрические сети и энергосистемы Р.И. Караев, С.Д.	НТБ (уч.3); НТБ (фб.);
	Волобринский, И.Н. Ковалев Однотомное издание	НТБ (чз.4)
	Транспорт, 1988	

7. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

- 1. http://library.miit.ru/ электронно-библиотечная система Научно-технической библиотеки МИИТ.
 - 2. http://elibrary.ru/ научная электронная библиотека eLIBRARI.RU.
 - 3. http://www.nelbook.ru/ электронная библиотека НЭЛБУК,
 - 4. http://opac.mpei.ru/ электронная библиотека МЭИ.
 - 5. Сайт Объединенной энергетической компании
 - 6. Сайт ФСК
 - 7. Сайт ТрансЭнерго филиала ОАО "РЖД"

8. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

MS Office

MATLAB: Simulink

KOMPAS 3D

9. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Для проведения лекционных занятий необходима специализированная лекционная аудитория с мультимедиа аппаратурой и интерактивной доской. При проведении учебных занятий по дисциплине используются возможности программного пакета Microsoft Office.

- 10. Форма промежуточной аттестации: Экзамен во 2 семестре.
- 11. Оценочные материалы.

Оценочные материалы формируются на основе принципов оценивания: валидности, определенности, однозначности, надежности.

Оценочные материалы включают в себя контрольные вопросы и типовые задания для практических занятий, контрольных работ, зачетов, экзаменов, тесты, примерную тематику рефератов, а также иные формы контроля, позволяющие оценить знания, умения и уровень приобретенных компетенций.