МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы магистратуры по направлению подготовки 13.04.01 Теплоэнергетика и теплотехника, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Энергосбережение при проектировании холодильных и теплонасосных установок, тепломассообменных аппаратов и систем

Направление подготовки: 13.04.01 Теплоэнергетика и теплотехника

Направленность (профиль): Энергосберегающие процессы и технологии

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 377843

Подписал: заведующий кафедрой Дмитренко Артур

Владимирович

Дата: 24.04.2024

1. Общие сведения о дисциплине (модуле).

освоения учебной «Энергосбережение Целью дисциплины проектировании И теплонасосных холодильных установок, тепломассообменных аппаратов и систем» является формирование в процессе подготовки магистров по направлению 13.04.01 «Теплоэнергетика и компетенций, позволяющих теплотехника» **>>** подготовить будущих проведению работ специалистов ПО применению расчёту трансформаторов теплоты в энергетике, промышленности, ж.д. транспорте и объектах ЖКХ.

Задачей преподавания дисциплины является приобретение студентами знаний в области эксплуатации теплоэнергетического оборудования различного назначения.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ПК-4** Способность разрабатывать и оптимизировать технологические решения при проектировании теплоэнергетических объектов и систем;
- **ПК-5** Способность к проведению патентных исследований и определению характеристик продукции, для оценки показателей технического уровня объекта техники, в соответствии с научно-технической документацией в профессиональной области знаний.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- основные теплофизические параметры при разработке и модернизации теплотехнического оборудования;
- методы анализа системного подхода к проблемам, связанным с эксплуатацией теплообменных аппаратов и систем.

Уметь:

- применять полученные знания для разработки проектных решений по повышению эффективности использования теплотехнических устройств;
- применять теоретические знания к решению практических задач в области тепломассообменных установок.

Владеть:

- компьютерными технологиями и знаниями в области информатизации при составлении расчетной модели оборудования.
- компьютерными технологиями и знаниями, необходимыми для работы в области научно-технической документации в профессиональной области знаний.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 4 з.е. (144 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Two was few as possession	Количество часов	
Тип учебных занятий		Семестр №2
Контактная работа при проведении учебных занятий (всего):	48	48
В том числе:		
Занятия лекционного типа	16	16
Занятия семинарского типа	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 96 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

$N_{\underline{0}}$	T				
Π/Π	Тематика лекционных занятий / краткое содержание				
1	Теория постановки задачи развития холодильной техники				
	Рассматриваемые вопросы:				
	-обратный цикл Карно, основа построения цикла холодильной машины;				
	-способы построения холодильных циклов;				
	-рассмотрение эксергетических балансов холодильников различного типа по физическим работы.				
2	Принцип действия тепловой трубы				
	Рассматриваемые вопросы: -теоретические принципы действия;				
	-типы конструктивного исполнения, пределы мощности теплового потока, влияние теплоносител т.е. его вида на тепловой поток.				
3	Способы передачи теплоты в тепломассообменных аппаратах Рассматриваемые вопросы:				
	-конструктивное исполнение, способы эффективного оребрения поверхностей, понятие				
	оптимальной толщины ребра;				
	-тепловой и гидравлический расчёт рекуперативных и регенеративных теплообменников, основные				
	положения прочностного расчёта.				
4	Теоретические основы интенсификации теплообмена				
	Рассматриваемые вопросы:				
	-способы оребрения,				
	-перфорация пластин оребрения, способы разрушения пограничного слоя с применением дутья.				

4.2. Занятия семинарского типа.

Практические занятия

$N_{\underline{0}}$	T			
п/п	Тематика практических занятий/краткое содержание			
1	Холодильные установки абсорбционного типа			
	Пример расчета абсорбционной холодильной машины и эффективность ее применения			
	Коэффициенты, определяющие эффективность установки, эксергетический баланс идеального холодильника.			
2	Холодильные установки парокомпрессионного типа			
	Пример расчета холодильной установки железнодорожного транспорта.			
	T-s-диаграмма для расчета холодильной установки парокомпрессионного типа. Коэффициенты,			
	определяющие эффективность установки, эксергетический баланс идеального холодильника.			
3	Тепловые насосы Пример расчета тепловой трубы для охлаждения электродвигателя и его сравнение с воздушным			
	охлаждением.			
	Примеры расчета эффективности при применении различничных хладагентов для трасформаторов			
	теплоты и проверка экологичности выбранного типа. Оценка их влияния на окружающую среду			
	Расчет теплонасосной установки, обеспечивающей теплотой и горячей водой медучреждения.			
	Подтверждения эффективности использования данного способа подачи теплоты.			
	Эффективность применения тепловых труб в пассажирском вагоне железнодорожного транспорта.			
4	Тепломассообменные аппараты и системы трубчатого типа			
	Пути интенсификации теплообмена в трубчатых теплообменных устройствах			
	Технико-экономические показател их применения.			
5	Тепломассообменные аппараты и системы пластинчатого типа			
	Сравнительный анализ теплообменных аппаратов пластинчатого и кожухотрубного типа. Технико-экономические показател их применения.			

№ п/п	Тематика практических занятий/краткое содержание
	Эффективность использования перфорированных пластин для воздухоподогревателей. Влияние
	толщины ребер и диаметра отверстий пластин на коэффициент теплоотдачи.

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Подготовка к практическим занятиям.
2	Проработка лекционного материала.
3	Подготовка к промежуточной аттестации.
4	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Давлетбаев В. А., Захаренко С. О., Степанов О. А. Основы трансформации теплоты: Учебное пособие для вузов. Издательство "Лань", 2025. – 212 с. ISBN 978-5-507-51556-1	https://e.lanbook.com/book/504437
2	Бударин Н. Л., Мартынов А. В., Очков В. Ф., Шелгинский Е. А., Яворовский Ю. В. Установки для трансформации тепла и охлаждения: расчеты на SMath: Учебное пособие для вузов 2-е изд., стер Издательство "Лань", 2025. 184 с. ISBN 978-5-507-52118-0	https://e.lanbook.com/book/438536
3	Приданцев, А. С. Теплообменные аппараты холодильных установок : учебно-методическое пособие / А. С. Приданцев, Д. Д. Ахметлатыйпова, В. В. Акшинская. — Казань : КНИТУ, 2017. — 120 с. — ISBN 978-5-7882-2247-9.	https://e.lanbook.com/book/138369 (дата обращения: 09.02.2025)

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

http://library.miit.ru/ - электронно-библиотечная система Научно-технической биб-лиотеки МИИТ.

http://elibrary.ru/ - научно-электронная библиотека.

Поисковые системы: Yandex, Mail.

http://www.twirpx.com/ - электронная библиотека.

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Компьютеры обеспечены стандартными лицензионными программными продуктами и обязательно программным продуктом Microsoft Office не ниже Microsoft Office 2007.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Для проведения практических занятий необходимы компьютеры с рабочими местами в компьютерном классе. Компьютерный класс оборудован компьютерами и кондиционером. Рабочее место преподавателя с персональным компьютером

Имеется комплект переносных инструментов и оборудования для проведения энерге тических обследований.

9. Форма промежуточной аттестации:

Зачет во 2 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент, к.н. кафедры «Теплоэнергетика транспорта» Института транспортной техники и систем управления

А.В. Костин

Согласовано:

Заведующий кафедрой ТТ

А.В. Дмитренко

Председатель учебно-методической

комиссии С.В. Володин