МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 15.03.06 Мехатроника и робототехника, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

3D моделирование мехатронных и робототехнических комплексов

Направление подготовки: 15.03.06 Мехатроника и робототехника

Направленность (профиль): Автоматизация и роботизация

технологических процессов

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 6216

Подписал: заведующий кафедрой Неклюдов Алексей

Николаевич

Дата: 01.06.2023

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины (модуля) являются:

- формирование у студентов теоретических и практических знаний в области применения современного программного обеспечения для выполнения сквозного проектирования изделий общего машиностроения;
 - ознакомления обучающихся с возможностями CAD/CAM/CAE систем;
- углубление и систематизация знаний в области 3D моделирования мехатронных и робототехнических комплексов;

Задачами дисциплины (модуля) являются:

- изучение CAD/CAM/CAE систем;
- освоение основных принципов и приемов работы в инженерном пакете Котраз 3D+APM FEM;
- изучение возможности передачи моделей между CAD/CAM/CAE системами;
- освоение способов программной обработки в известных пакетах инженерного анализа;
- приобретение студентами практических навыков в области 3D проектирования деталей и сборочных единиц.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-7** Способен применять современные экологичные и безопасные методы рационального использования сырьевых и энергетических ресурсов в машиностроении;
- **ОПК-9** Способен внедрять и осваивать новое технологическое оборудование;.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- основные методы проектирования;
- компоненты CAD/CAM/CAE систем;
- современные программные системы компьютерного проектирования;
- методы решения связанных (междисциплинарных) задач;
- аппаратно-технические способы повышения эффективности численных алгоритмов;

- методику проведения прочностных расчётов деталей мехатронных и робототехнических комплексов.

Уметь:

- проводить проектирование деталей и узлов с использованием CAD- и CAE-систем;
- осуществлять импорт/экспорт моделей в системах компьютерного проектирования;
 - выполнять численную дискретизацию моделей;
- применять встроенные численные алгоритмы для решения прикладных задач.
 - создавать модели деталей и узлов с применением современных САПР;
- проводить прочностные расчеты деталей мехатронных модулей и робототехнических комплексов.

Владеть:

- навыками 3D проектирования деталей и узлов;
- методами проектирования деталей и узлов с помощью САПР;
- основными приемами работы в программных системах компьютерного проектирования;
- навыками проведения вычислительных экспериментов в существующих программных системах компьютерного проектирования.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

		Количество	
Тип учебных занятий	часов		
	Всего	Сем.	
		№3	
Контактная работа при проведении учебных занятий (всего):	48	48	
В том числе:			
Занятия лекционного типа	16	16	

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 60 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№	Тематика лекционных занятий / краткое содержание	
Π/Π		
1	Введение в твердотельное моделирование деталей.	
	Рассматриваемые вопросы:	
	- основные термины модели;	
	- общие принципы твердотельного моделирования;	
	- требования к эскизам;	
	- создание основания модели детали;	
	- дополнительные конструктивные элементы.	
2	Операции с трехмерными моделями деталей.	
	Рассматриваемые вопросы:	
	- отсечение части детали и построение массивов элементов;	
	- построение вспомогательных объектов;	
	- построение пространственных объектов.	
3	Настройка параметров и расчет характеристик моделей.	
	Рассматриваемые вопросы:	
	- задание свойств модели;	
	- управление свойствами поверхности модели; - выбор материала.	
4	Использование параметрических библиотек.	
	Рассматриваемые вопросы:	
	- выполнение стандартных конструктивных элементов в моделях деталей;	
	- создание канавки;	
	- создание шпоночного паза;	
	- создание моделей стандартных деталей.	
5	Моделирование деталей из листового материала.	

№	Тематика лекционных занятий / краткое содержание		
п/п			
	Рассматриваемые вопросы:		
	- введение в моделирование листовых деталей;		
	- создание листовых моделей;		
	- моделирование захвата;		
	- кронштейн из листа.		
6	Приемы создания модели сборки.		
	Рассматриваемые вопросы:		
	- добавление компонента из файла;		
	- задание взаимного положения элементов в сборке;		
	- создание массивов компонентов;		
	- сопряжения в сборке;		
	- формообразующие операции в сборке.		
7	Введение в создание моделей и конструкторской документации сборок.		
	Рассматриваемые вопросы:		
	- создания модели сборки;		
	- добавление в сборку стандартных изделий;		
	- разнесение компонентов сборки;		
	- настройка параметров и измерение характеристик моделей;		
	- общие приемы редактирования сборки;		
	- приемы создания спецификации.		
8	Интерфейс системы APM FEM.		
	Рассматриваемые вопросы:		
	- общий вид APM FEM;		
	- команды библиотеки APM FEM;		
	- панель инструментов APM FEM: Прочностной анализ;		
	- выбор объектов;		
	- задание свойств материала;		
	- особенности расчета деталей и сборок;		
	- панель свойств.		

4.2. Занятия семинарского типа.

Лабораторные работы

№ п/п	Наименование лабораторных работ / краткое содержание		
1	Создание трехмерной модели детали простой конфигурации с примением САD		
	системы.		
	В результате проведения лабораторной работы обучающие приобретают навыки создания трехмерных		
	моделей деталей мехатронных модулей и робототехнических комплексов сложной конфигурации.		
2	Создание трехмерной модели детали сложной конфигурации с примением САО		
	системы.		
	В результате проведения лабораторной работы обучающие приобретают навыки создания трехмерных		
	моделей деталей мехатронных модулей и робототехнических комплексов из листовых материалов.		
3	Создание трехмерной модели детали из листового материала с примением CAD		
	системы.		
	В результате проведения лабораторной работы обучающие приобретают навыки создания трехмерных		
	моделей деталей мехатронных модулей и робототехнических комплексов из листовых материалов.		
4	Создание трехмерной модели сборочной единицы, входящей в конструкцию		

№ п/п	Наименование лабораторных работ / краткое содержание	
	мехатронного модуля или робототехнического комплекса.	
	В результате проведения лабораторной работы обучающие приобретают навыки создания трехмерных	
	моделей сборочных единиц, входящих в состав конструкции мехатронных модулей или	
	робототехнических комплексов.	
5	Прочностной анализ детали простой конфигурации с помощью САЕ системы.	
	В результате проведения лабораторной работы обучающие приобретают навыки проведения	
	прочностного анализа деталей простой конфигурации.	
6	Прочностной анализ детали сложной конфигурации с помощью САЕ системы.	
	В результате проведения лабораторной работы обучающие приобретают навыки проведения	
	прочностного анализа деталей сложной конфигурации.	
7	Проведение инженерного анализа сборочных единиц с применением прикладных	
	пакетов Kompas 3D.	
	В результате проведения лабораторной работы обучающие приобретают навыки проведения	
	инженерного анализа сборочных единиц с помощью прикладных пакетов Kompas 3D.	
8	Топологическая оптимизации конструкции с применением прикладных пакетов	
	Kompas 3D.	
	В результате проведения лабораторной работы обучающие приобретают навыки проведения	
	топологической оптимизации деталей по результатам прочностного анализа с помощью прикладных	
	пакетов Kompas 3D.	

Практические занятия

	1		
№ п/п	Тематика практических занятий/краткое содержание		
1	Создание 3D-модели с использованием вспомогательных осей и плоскостей.		
1	В результате выполнения практического занятия обучающие изучают основные команды		
	вспомогательных построений при		
2	создании трехмерных моделей.		
2	Создание 3D-модели с элементами ее обработки.		
	В результате выполнения практического занятия обучающие изучают основные команды обработки		
	трехмерных моделей.		
3	Создание модели резьбового соединения из двух компонентов.		
	В результате выполнения практического занятия обучающие изучают основные команды		
	вспомогательных построений при		
	создании трехмерных моделей.		
4	Создание модели опоры.		
	В результате выполнения практического занятия обучающие создают модель опоры с применением		
	стандартных изделий и ее спецификацию.		
5	Создание модели и документации шпилечного соединения.		
	В результате выполнения практического занятия обучающиеся выполняют модель шпилечного		
	соединения и подготавливают для него документацию.		
6	Выполнение ассоциативных чертежей по теме «Разрезы».		
	В результате выполнения практического занятия обучающиеся выполняют три вида и изометрию		
	детали, на главном виде необходимо совместить		
	половину вида и половину разреза.		
7	Создание чертежа сборочной единицы.		
	В результате выполнения практического задания обучающимся необходимо выполнить трехмерные		
	модели и ассоциативные чертежи деталей. В каждом ассоциативном чертеже расположить		
	аксонометрию с вырезом одной четверти детали.		

№ п/п	Тематика практических занятий/краткое содержание	
8	Прочностной анализ элемента мехатронного модуля в APM FEM.	
	В результате выполнения практического занятия обучающиеся ознакамливаются с порядком	
	проведения прочностного анализа деталей.	

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Текущая подготовка к лабораторным и практическим занятиям.
2	Выполнение курсовой работы.
3	Подготовка к промежуточной аттестации.
4	Подготовка к текущему контролю.

4.4. Примерный перечень тем курсовых работ

Результатом выполнения курсовой работы является создание трехмерной сборочной модели мехатронного модуля или роботизированного комплекса по вариантам.

Исходными данными для курсовой работы является спецификация и описание устройства (или приспособления), сборочный чертеж устройства.

Курсовая работа выполняется в системе автоматизированного проектирования Компас 3D.

Последовательность выполнения курсовой работы:

- 1. Формирование спецификации и описания устройства, формирование 3D-моделей деталей, входящих в сборку (размеры берутся непосредственно с чертежа в мм).
- 2. Формирование 3D-модели сборки по 3D-моделям деталей и выполнение чертежа по модели сборки.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Лисяк, В. В. Основы компьютерной графики: 3D-моделирование и 3D-печать : учебное пособие / В. В. Лисяк. — Ростов-на-Дону : ЮФУ, 2021. — 109 с. — ISBN 978-5-9275-3825-6.	URL: https://e.lanbook.com/book/195375 (дата обращения: 11.04.2023) Текст: электронный.
2	Черепахин, А. А. Технологические процессы в машиностроении: учебное пособие / А. А. Черепахин, В. А. Кузнецов. — 3-е изд., стер.	URL: https://e.lanbook.com/book/118618 (дата обращения: 11.04.2023) Текст: электронный.

	Солга Потоблит и Полг 2010 104 о	
	— Санкт-Петербург : Лань, 2019. — 184 c. —	
	ISBN 978-5-8114-4303-1.	
3	Вячеслав Никонов. КОМПАС-3D: создание	URL:
	моделей и 3D-печать Санкт-Петербург:	https://ibooks.ru/bookshelf/371705/reading
	Питер, 2020 209 с ISBN 978-5-4461-1456-	(дата обращения: 11.04.2023) Текст:
	6.	электронный.
4	Рихтер А.А. Информационные и учебно-	URL:
	методические основы 3D-моделирования	https://ibooks.ru/bookshelf/361280/reading
	(теория и практика) / А.А. Рихтер, М.А.	(дата обращения: 11.04.2023) Текст:
	Шахраманьян Москва : Инфра-М, 2018	электронный.
	239 c.	
5	Большаков В.П. Твердотельное	URL:
	моделирование деталей в САД-системах:	https://ibooks.ru/bookshelf/342317/reading
	AutoCAD, KOMΠAC-3D, SolidWorks,	(дата обращения: 11.04.2023) Текст:
	Inventor, Creo / В.П. Большаков, А.Л. Бочков,	электронный.
	Ю.Т. Лячек Санкт-Петербург : Питер, 2015.	
	- 480 c ISBN 978-5-496-01179-2.	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/)

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru)

Образовательная платформа «Юрайт» (https://urait.ru/)

Общие информационные, справочные и поисковые «Консультант Плюс» (http://www.consultant.ru/),

«Гарант» (http://www.garant.ru/),

Главная книга (https://glavkniga.ru/)

Электронно-библиотечная система издательства (http://e.lanbook.com/)

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/)

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Office (Word, Excel); ΚΟΜΠΑC-3D.

- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).
- 1. Рабочее место преподавателя с персональным компьютером, подключённым к сетям INTERNET. Программное обеспечение для создания

текстовых и графических документов, презентаций.

- 2. Специализированная лекционная аудитория с мультимедиа аппаратурой и интерактивной доской.
 - 3. Для проведения тестирования: компьютерный класс.
- 4. Специализированная аудитория для выполнения практических работ, оснащенная испытательными стендами, оборудованная рабочими столами, электрическими розетками, компьютером, проектором и экраном, и доступом в интернет.
 - 9. Форма промежуточной аттестации:

Зачет в 3 семестре.

Курсовая работа в 3 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, к.н. кафедры «Наземные транспортно-технологические средства»

П.А. Григорьев

Согласовано:

Заведующий кафедрой НТТС

А.Н. Неклюдов

Председатель учебно-методической

комиссии С.В. Володин