МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы магистратуры по направлению подготовки 11.04.02 Инфокоммуникационные технологии и системы связи, утвержденной И.о. директора РУТ (МИИТ) Игольниковым Б.В.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Java-разработка. Виртуальные машины

Направление подготовки: 11.04.02 Инфокоммуникационные

технологии и системы связи

Направленность (профиль): Инфокоммуникационные и нейросетевые

технологии передачи и анализа больших

данных

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 167783

Подписал: руководитель образовательной программы

Киселёва Анастасия Сергеевна

Дата: 17.11.2025

1. Общие сведения о дисциплине (модуле).

Целью освоения учебной дисциплины является формирование у обучающихся компетенций в соответствии с требованиями образовательного стандарта и в освоении принципов разработки программного обеспечения на языке Java с использованием виртуальных машин для создания кроссплатформенных приложений и эффективного управления ресурсами.

Задачи дисциплины включают углубленное изучение продвинутых возможностей языка Java, таких как функциональное программирование и работа с потоками данных. Студенты должны освоить архитектуру виртуальной машины Java, включая механизмы управления памятью и оптимизации производительности, а также научиться применять паттерны проектирования для создания масштабируемых и поддерживаемых приложений. Важной задачей также является изучение интеграции с современными фреймворками и инструментами разработки, такими как Spring и Maven, для повышения эффективности работы в команде и улучшения качества кода.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-4** Способен разрабатывать и применять специализированное программно-математическое обеспечение для проведения исследований и решении проектно-конструкторских и научно-исследовательских задач;
- **ПК-2** Способен осуществлять разработку и внедрение специального программного обеспечения цифровой обработки сигналов, цифрового программного управления на языках высокого и низкого уровней.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- особенности языка программирования Java, включая его синтаксис, особенности и новые возможности, а также архитектуру виртуальной машины Java (JVM) и ее влияние на производительность приложений;
- методики сбора, анализа и обработки статистической информации инфокоммуникационных систем;
- правила и закономерности личной иделовой устной и письменной коммуникации.

Уметь:

- разрабатывать и оптимизировать многопоточные приложения, эффективно управлять памятью и ресурсами, а также применять различные паттерны проектирования для создания масштабируемых и поддерживаемых решений;
- проводить исследования характеристик телекоммуникационногооборудования и оценки качества предоставляемых услуг;
- применять на практике коммуникативные технологии, методы и способы делового общения для академического и профессионального взаимодействия.

Владеть:

- навыками с работы современными фреймворками, такими как Spring и Hibernate, интегрирации их в свои проекты, а также использовать инструменты сборки и управления зависимостями, такие как Maven или Gradle, для автоматизации процессов разработки;
- навыками проведения экспериментальных работ по проверке достижимости технических характеристик, радиоэлектронной аппаратуры;
- методикой межличностного делового общения на русском и иностранном языках, с применением профессиональных языковых форм, средстви современных коммуникативных технологий.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 6 з.е. (216 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №2
Контактная работа при проведении учебных занятий (всего):	42	42
В том числе:		
Занятия лекционного типа	14	14
Занятия семинарского типа	28	28

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 174 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№	Тематика лекционных занятий / краткое содержание		
Π/Π			
1	Расширенные возможности Java.		
	Рассматриваемые вопросы:		
	- новые функции языка (Java 8 и выше);		
	- параметризованные типы и дженерики;		
	- обработка исключений: best practices.		
2	Архитектура и производительность JVM.		
	Рассматриваемые вопросы:		
	- внутренние механизмы JVM (классовая загрузка, выполнение);		
	- оптимизация производительности (ЛТ-компиляция, HotSpot);		
	- сборка мусора: алгоритмы и настройки.		
3	Многопоточность и асинхронное программирование.		
	Рассматриваемые вопросы: - продвинутые концепции многопоточности (ThreadLocal, Fork/Join);		
	- параллельные потоки и Stream API;		
	- асинхронное программирование с использованием CompletableFuture.		
4	Сетевое программирование и протоколы.		
	Рассматриваемые вопросы:		
	- основы работы с сокетами в Java;		
	- создание RESTful API с использованием Spring Boot;		
	- введение в WebSocket и его применение.		
5	Работа с базами данных и ORM.		
	Расмматриваемые вопросы:		
	- глубокое понимание Hibernate: кэширование, транзакции;		
	- оптимизация запросов и работа с SQL;		
	- миграции баз данных с Flyway или Liquibase.		
6	Разработка микросервисов.		
	Рассматриваемые вопросы:		

№ п/п	Тематика лекционных занятий / краткое содержание	
	- архитектура микросервисов: принципы и паттерны; - сервисная коммуникация: REST vs. gRPC; - управление конфигурацией и секретами (Spring Cloud Config, HashiCorp Vault).	
7	Тестирование и обеспечение качества кода. Рассматриваемые вопросы: - юнит-тестирование с JUnit и Mockito; - интеграционное тестирование и тестирование производительности; - практики тестирования в Agile-среде.	
8	DevOps и CI/CD в Java-разработке. Рассматриваемые вопросы: - основы DevOps: философия и инструменты; - настройка пайплайнов CI/CD с Jenkins или GitLab CI; - контейнеризация приложений с Docker.	

4.2. Занятия семинарского типа.

Практические занятия

No	Тематика практических занятий/краткое содержание	
Π/Π		
1	Работа с новыми возможностями Java.	
	Рассматриваемые вопросы:	
	- лямбда-выражения и функциональные интерфейсы;	
	- streams API: фильтрация, сортировка и агрегация данных;	
	- параметризованные типы и дженерики.	
2	Оптимизация производительности JVM.	
	Рассматриваемые вопросы:	
	- профилирование приложений с JVisualVM;	
	- настройка параметров JVM для повышения производительности;	
	- алгоритмы сборки мусора: настройка и тестирование.	
3	Многопоточность и параллелизм.	
	Рассматриваемые вопросы:	
	- реализация многопоточных приложений с использованием ExecutorService;	
	- использование Concurrent Collections;	
	- создание и управление потоками с помощью Fork/Join Framework.	
4	Разработка RESTful API.	
	Рассматриваемые вопросы:	
	- создание RESTful сервисов с Spring Boot;	
	- обработка ошибок и валидация входящих данных;	
	- документирование API с использованием Swagger.	
5	Работа с базами данных.	
	Рассматриваемые вопросы:	
	- использование Hibernate для ORM;	
	- оптимизация запросов и индексация;	
	- реализация миграций с Flyway или Liquibase.	
6	Тестирование кода.	
	Рассматриваемые вопросы:	
	- написание юнит-тестов с JUnit и Mockito;	
	- интеграционное тестирование с использованием Spring Test;	
	- настройка тестирования производительности с JMeter.	

No॒	To remy very very very very poverny very very very very very very very ver	
Π/Π	Тематика практических занятий/краткое содержание	
7	Архитектура микросервисов.	
	Рассматриваемые вопросы:	
	- реализация микросервисной архитектуры с Spring Cloud;	
	- использование API Gateway и Service Discovery;	
	- настройка конфигурации и управления секретами.	
8	Контейнеризация приложений.	
	Рассматриваемые вопросы:	
	- создание Docker-контейнеров для Java-приложений;	
	- настройка Docker Compose для многоконтейнерных приложений;	
	- развертывание приложений в Kubernetes.	
9	CI/CD.	
	Рассматриваемые вопросы:	
	- настройка пайплайнов CI/CD с Jenkins;	
	- автоматизация развертывания с использованием Ansible;	
	- интеграция тестов в процесс CI/CD.	
10	Безопасность приложений.	
	Рассматриваемые вопросы:	
	- основы безопасности в веб-приложениях (OWASP Top Ten);	
	- реализация аутентификации и авторизации с Spring Security;	
	- защита от уязвимостей: XSS, CSRF, SQL-инъекции.	
11	Работа с кэшированием.	
	Рассматриваемые вопросы:	
	- использование кэша в приложениях с Spring Cache;	
	- реализация распределенного кэша с Redis;	
	- настройка кэширования запросов к базе данных.	
12	Логирование и мониторинг.	
	Рассматриваемые вопросы:	
	- настройка логирования с использованием SLF4J и Logback;	
	- мониторинг приложений с Prometheus и Grafana;	
	- анализ логов с ELK Stack (Elasticsearch, Logstash, Kibana).	
13	Проектирование АРІ.	
	Рассматриваемые вопросы:	
	- создание и тестирование GraphQL API;	
	- сспользование gRPC для высокопроизводительных сервисов;	
	- реализация версионирования АРІ.	
14	Работа с асинхронным программированием	
	Рассматриваемые вопросы:	
	- использование CompletableFuture для асинхронных задач;	
	- реализация обработки событий с использованием Reactive Streams;	
	- применение Project Reactor для создания реактивных приложений.	

4.3. Самостоятельная работа обучающихся.

$N_{\underline{0}}$	Вид самостоятельной работы	
Π/Π		
1	Самостоятельное изучение и конспектирование отдельных тем учебной	
	литературы, связынных с разделами дисциплины.	
2	Работа с лекционным материалом.	
3	Подготовка к практическим занятиям.	

4	Выполнение курсового проекта.
5	Подготовка к промежуточной аттестации.
6	Подготовка к текущему контролю.

4.4. Примерный перечень тем курсовых проектов

Курсовой проект на тему: "Система управления IoT-устройствами". Исходные данные выбираются согласно вариантам:

1. Умные лампы

Количество устройств: 100 умных ламп

Данные об их состоянии: 70 включено, 30 выключено

История событий: 2000 событий (включение/выключение) за месяц

Данные о пользователях: 50 зарегистрированных пользователей

Настройки устройства: 60 ламп с индивидуальными настройками яркости

Данные сенсоров: 0 сенсоров

Геолокация: 20 ламп с активной геолокацией

Триггеры событий: 10 триггеров для автоматизации (например, включение по расписанию)

Взаимодействие с пользователем: 500 взаимодействий за месяц

2. Умные термостаты

Количество устройств: 75 термостатов

Данные об их состоянии: 60 активных, 15 в режиме ожидания

История событий: 1500 событий (изменение температуры) за месяц

Данные о пользователях: 40 пользователей

Настройки устройства: 70 термостатов с индивидуальными настройками

Данные сенсоров: 75 сенсоров температуры

Геолокация: 50 термостатов с активной геолокацией

Триггеры событий: 15 триггеров для автоматизации (например, по расписанию)

Взаимодействие с пользователем: 600 взаимодействий за месяц

3. Умные камеры

Количество устройств: 50 камер

Данные об их состоянии: 45 включено, 5 выключено

История событий: 3000 событий (запись видео) за месяц

Данные о пользователях: 30 пользователей

Настройки устройства: 20 камер с индивидуальными настройками

Данные сенсоров: 50 сенсоров движения

Геолокация: 30 камер с активной геолокацией

Триггеры событий: 5 триггеров (например, запись при обнаружении движения)

Взаимодействие с пользователем: 800 взаимодействий за месяц

4. Умные замки

Количество устройств: 40 замков

Данные об их состоянии: 35 открыто, 5 закрыто

История событий: 1000 событий (открытие/закрытие) за месяц

Данные о пользователях: 20 пользователей

Настройки устройства: 30 замков с индивидуальными настройками

Данные сенсоров: 0 сенсоров

Геолокация: 15 замков с активной геолокацией

Триггеры событий: 8 триггеров (например, открытие по приближению)

Взаимодействие с пользователем: 300 взаимодействий за месяц

5. Умные датчики дыма

Количество устройств: 60 датчиков

Данные об их состоянии: 50 активных, 10 в режиме ожидания

История событий: 500 событий (срабатывание) за месяц

Данные о пользователях: 25 пользователей

Настройки устройства: 55 датчиков с индивидуальными настройками

Данные сенсоров: 60 сенсоров дыма

Геолокация: 10 датчиков с активной геолокацией

Триггеры событий: 3 триггера (например, сигнализация при срабатывании)

Взаимодействие с пользователем: 200 взаимодействий за месяц

6. Умные фитнес-трекеры

Количество устройств: 120 фитнес-трекеров

Данные об их состоянии: 100 активных, 20 в режиме ожидания

История событий: 2500 событий (измерение активности) за месяц

Данные о пользователях: 80 пользователей

Настройки устройства: 90 трекеров с индивидуальными настройками

Данные сенсоров: 120 сенсоров (пульс, шаги, сожженные калории)

Геолокация: 100 трекеров с активной геолокацией

Триггеры событий: 10 триггеров (например, уведомление о достижении цели)

Взаимодействие с пользователем: 1200 взаимодействий за месяц

7. Умные холодильники

Количество устройств: 30 холодильников

Данные об их состоянии: 25 активных, 5 в режиме ожидания

История событий: 800 событий (изменение температуры) за месяц

Данные о пользователях: 15 пользователей

Настройки устройства: 20 холодильников с индивидуальными настройками

Данные сенсоров: 30 сенсоров температуры и влажности

Геолокация: 5 холодильников с активной геолокацией

Триггеры событий: 6 триггеров (например, уведомление о высоких температурах)

Взаимодействие с пользователем: 400 взаимодействий за месяц

8. Умные системы полива

Количество устройств: 50 систем полива

Данные об их состоянии: 40 активных, 10 в режиме ожидания

История событий: 1200 событий (включение/выключение полива) за месяц

Данные о пользователях: 25 пользователей

Настройки устройства: 35 систем с индивидуальными настройками

Данные сенсоров: 50 сенсоров влажности почвы

Геолокация: 30 систем с активной геолокацией

Триггеры событий: 12 триггеров (например, автоматический полив по расписанию)

Взаимодействие с пользователем: 500 взаимодействий за месяц

9. Умные колонки

Количество устройств: 90 колонок

Данные об их состоянии: 70 активных, 20 в режиме ожидания

История событий: 3000 событий (воспроизведение музыки, запросы) за месяц

Данные о пользователях: 60 пользователей

Настройки устройства: 80 колонок с индивидуальными настройками звука

Данные сенсоров: 0 сенсоров

Геолокация: 10 колонок с активной геолокацией

Триггеры событий: 15 триггеров (например, воспроизведение музыки по голосовой команде)

Взаимодействие с пользователем: 2000 взаимодействий за месяц

10. Умные системы безопасности

Количество устройств: 45 систем безопасности

Данные об их состоянии: 35 активных, 10 в режиме ожидания

История событий: 900 событий (срабатывание сигнализации, уведомления) за месяц

Данные о пользователях: 25 пользователей

Настройки устройства: 30 систем с индивидуальными настройками

Данные сенсоров: 45 сенсоров (движения, открытия дверей)

Геолокация: 20 систем с активной геолокацией

Триггеры событий: 7 триггеров (например, уведомления при срабатывании)

Взаимодействие с пользователем: 600 взаимодействий за месяц

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Строганкова, Н. В. Шаблоны программных	https://e.lanbook.com/book/182466
	платформ языка Java : учебное пособие / H. B.	

		Строганкова, К. В. Касьяненко, А. В. Хозяинов;	
		составители практикума входят: использование.	
		— Москва : РТУ МИРЭА, 2021. — 83 с.	
Ī	2	Пономарчук, Ю. В. Программирование на языке	https://e.lanbook.com/book/259451
		Java : учебное пособие / Ю. В. Пономарчук, И. В.	
		Кузнецов. — Хабаровск : ДВГУПС, 2021. — 103 с.	
	3	Федоричев, Л. А. Реализация многопоточности в	https://e.lanbook.com/book/457502
		языке Java : учебное пособие для вузов / Л. А.	
		Федоричев, О. В. Букунова. — 2-е изд., стер. —	
		Санкт-Петербург: Лань, 2025. — 72 с. — ISBN	
		978-5-507-52722-9.	
			II

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Информационный портал Научная электронная библиотека eLIBRARY.RU (www.elibrary.ru);

Единая коллекция цифровых образовательных ресурсов (http://window, edu.ru);

Научно-техническая библиотека РУТ (МИИТ) (http/library.miit.ru);

Поисковые системы «Яндекс» для доступа к тематическим информационным ресурсам;

Электронно-библиотечная система издательства «Лань» – http://e.lanbook.com/;

Электронно-библиотечная система ibooks.ru – http://ibooks.ru/;

Электронно-библиотечная система «УМЦ» – http://www.umczdt.ru/;

Электронно-библиотечная система «BOOK.ru» – http://www.book.ru/;

Электронно-библиотечная система «ZNANIUM.COM» – http://www.znanium.com/

- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).
 - 1. Операционная система windows microsoft office 2003 и выше;
- 2. Браузер Internet Explorer 8.0 и выше с установленным Adobe Flash player версии 10.3 и выше;
 - 3. Adobe acrobat.
- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

9. Форма промежуточной аттестации:

Курсовой проект во 2 семестре. Экзамен во 2 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

старший преподаватель кафедры «Системы управления транспортной инфраструктурой»

А.Н. Малых

Согласовано:

Руководитель образовательной

программы А.С. Киселёва

Председатель учебно-методической

д.В. Паринов